Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+1

Number Theory

There is a number formed by n copies of 2020 and 1 in the unit place.
If this number is divisible by 17,
what is the smallest possible value of n?


Formula: 2020n+10(mod17)

 

2020n+10(mod17)|202014(mod17)14n+10(mod17)14n1(mod17)n(1)114(mod17)

 

Modular multiplicative inverse using Euler's theorem:

114(mod17)14ϕ(17)1(mod17)|ϕ(17)=1614161(mod17)1415(mod17)|143(mod17)(3)15(mod17)(3)15(mod17)(3)53(mod17)(35)3(mod17)|355(mod17)(5)3(mod17)125(mod17)|125(mod17)6(mod17)114(mod17)6(mod17)

 

n(1)114(mod17)|114(mod17)6(mod17)n(1)(6)(mod17)n6(mod17)n=6+17kkZ

 

The smallest possible value of n is 6

 

laugh

26.05.2021
 #1
avatar+26397 
+1

What is the product of the two smallest prime factors of 21001?


First prime factor 2 ?
21001 is an odd number so 2 is no prime factor in 21001

 

next prime factor 3 ?
If 3 is a prime factor in 21001, then 210010(mod3)
210010(mod3)?|21(mod3)(1)10010(mod3)?110(mod3)?00(mod3) |3 is a prime factor in 21001

 

next prime factor 5 ?
If 5 is a prime factor oin 21001, then 210010(mod5)
210010(mod5)?225010(mod5)?(22)5010(mod5)?|22=41(mod5)(1)5010(mod5)?110(mod5)?00(mod5) |5 is a prime factor in 21001

 

35=15

 

The product of the two smallest prime factors of 21001 is 15

 

laugh

26.05.2021
 #2
avatar+26397 
+1

Find all the solutions to
3352+x+352x=2

 

3352+x+352x=2|cube both sides352+x+352x=(2)3|cube both sides(352+x+352x)3=(2)9(a+b)3=a3+b3+3ab(a+b)52+x+52x+33(52+x)(52x)(352+x+352x=(2)3)=(2)9102+33252x2(2)3=(2)93350x2=(2)9102(2)33350x2=2((2)810)2(2)23350x2=(2)810(2)23350x2=161043350x2=3350x2=1|cube both sides50x2=1x2=49x=±7

 

Solutions:
x=7x=7

 

laugh

25.05.2021