Find all complex numbers z such that z4=−4.
Note: All solutions should be expressed in the form , where and are real numbers.
We can write -4 in exponential notation as 4e^(pi*i), so the equation is z^4 = 4e^(pi*i).
By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4). Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i. Then the other roots work out as
4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,
4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and
4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.
Find all complex numbers z such that z4=−4.
z4=−4|sqrt both sidesz2=±√−4z2=±√(−1)∗4z2=±√−1∗√4|√−1=iz2=±2i|sqrt both sidesz=±√±2iz1=√2iz2=√−2iz3=−√2i=−z1z4=−√−2i=−z2
(1+i)2=1+2i+i2|i2=−1(1+i)2=1+2i−1(1+i)2=2i(1−i)2=1−2i+i2|i2=−1(1−i)2=1−2i−1(1−i)2=−2i
z1=√2i|2i=(1+i)2z1=√(1+i)2z1=1+iz2=√−2i|−2i=(1−i)2z2=√(1−i)2z2=1−iz3=−z1z3=−(1+i)z3=−1−iz4=−z2z4=−(1−i)z4=−1+i