Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
577
2
avatar

Find all complex numbers z  such that z4=4.

Note: All solutions should be expressed in the form , where  and  are real numbers.

 May 2, 2021
 #1
avatar
0

We can write -4 in exponential notation as 4e^(pi*i), so the equation is z^4 = 4e^(pi*i).

 

By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4).  Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i.  Then the other roots work out as

 

4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,

4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and

4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.

 May 2, 2021
 #2
avatar+26399 
+2

Find all complex numbers z such that z4=4.

 

z4=4|sqrt both sidesz2=±4z2=±(1)4z2=±14|1=iz2=±2i|sqrt both sidesz=±±2iz1=2iz2=2iz3=2i=z1z4=2i=z2

 

(1+i)2=1+2i+i2|i2=1(1+i)2=1+2i1(1+i)2=2i(1i)2=12i+i2|i2=1(1i)2=12i1(1i)2=2i

 

z1=2i|2i=(1+i)2z1=(1+i)2z1=1+iz2=2i|2i=(1i)2z2=(1i)2z2=1iz3=z1z3=(1+i)z3=1iz4=z2z4=(1i)z4=1+i

 

laugh

 May 3, 2021

0 Online Users