Suppose z and w are complex numbers. Prove that z+¯z and w¯w are real.
Let z=a+biLet ¯z=a−biz+¯z=a+bi+a−biz+¯z=2aLet w=a+biLet ¯w=a−biw¯w=(a+bi)(a−bi)w¯w=a2−(bi)2w¯w=a2−b2i2|i2=−1w¯w=a2+b2