Find the exact value of 2012-2002+1992-1982 +...+ 32 - 22 + 12 - 2
1.−2+12=102.−22+32=103.−42+52=10…………n−1−1982+1992=10n−2002+2012=10sum=10∗nsum=10∗101sum=1010 finite arithmetic progressionan=a1+(n−1)d|an=2012, a1=12, d=202012=12+(n−1)∗202000=(n−1)∗20100=n−1n=101
