Two 2*8 rectangles overlap, as shown below.
Find the area of the overlapping region (which is shaded)

Let O=(0,0)Let A=(−1,4)Let B=(1,4)Let E=(xE,yE)Let area of rectangle =2∗8 Let area of triangle [BEG]=¯BG∗h2 Let the gray area = area of rectangle−2∗ area of triangle [BEG] Let the gray area =2∗8−¯BG∗h Let h=xE−xBLet p=yB−yELet ¯AB=¯BE=2Let ¯BE2=p∗¯BG
1. rotate
Rotation matrix R=[cos(ß)sin(ß)−sin(ß)cos(ß)]B=R⋅A[xByB]=[cos(ß)sin(ß)−sin(ß)cos(ß)][xAyA]
[14]=[cos(ß)sin(ß)−sin(ß)cos(ß)][−14]−cosß+4sin(ß)=1(1)sinß+4cos(ß)=4(2)sin(ß)=817cos(ß)=1517
2. rotate
[xEyE]=[cos(ß)sin(ß)−sin(ß)cos(ß)][14]cosß+4sin(ß)=xE(3)xE=1517+4∗817xE=4717−sinß+4cos(ß)=yE(4)yE=817+4∗1517yE=5217
h=xE−xBh=4717−1h=3017p=yB−yEp=4−5217p=1617¯BE2=p∗¯BG|BE=222=1617∗¯BG¯BG=41617¯BG=174Gray area =2∗8−¯BG∗h=2∗8−174∗3017=2∗8−304=16−152=32−152=172Gray area =8.5
