Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26399
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26399 
+4

I need help with this system:
x(y+z)=39y(x+z)=60z(x+y)=63

 

What is x?

 

(1)x(y+z)=39(2)y(x+z)=60 or yx+yz=60(3)z(x+y)=63 or zx+yz=63(1)+(2)+(3):x(y+z)+y(x+z)+z(x+y)=39+60+63x(y+z)+yx+yz+zx+zy=162x(y+z)+x(y+z)+2yz=1622x(y+z)+2yz=162|:2x(y+z)+yz=81|x(y+z)=3939+yz=81yz=8139yz=42yx+yz=60|yz=42yx+42=60yx=6042yx=18 or y=18xzx+yz=63|yz=42zx+42=63zx=6342zx=21 or z=21xyz=4218x21x=4242x2=1821x2=182142x2=363767x2=33x=3y=18xy=183y=6z=21xz=213z=7

 

laugh

19.01.2021
 #3
avatar+26399 
+3

Two 2*8 rectangles overlap, as shown below.
Find the area of the overlapping region (which is shaded)

 

 

Let O=(0,0)Let A=(1,4)Let B=(1,4)Let E=(xE,yE)Let area of rectangle =28 Let area of triangle [BEG]=¯BGh2 Let the gray area = area of rectangle2 area of triangle [BEG] Let the gray area =28¯BGh Let h=xExBLet p=yByELet ¯AB=¯BE=2Let ¯BE2=p¯BG

 

1. rotate

Rotation matrix R=[cos(ß)sin(ß)sin(ß)cos(ß)]B=RA[xByB]=[cos(ß)sin(ß)sin(ß)cos(ß)][xAyA]

[14]=[cos(ß)sin(ß)sin(ß)cos(ß)][14]cosß+4sin(ß)=1(1)sinß+4cos(ß)=4(2)sin(ß)=817cos(ß)=1517

 

2. rotate

[xEyE]=[cos(ß)sin(ß)sin(ß)cos(ß)][14]cosß+4sin(ß)=xE(3)xE=1517+4817xE=4717sinß+4cos(ß)=yE(4)yE=817+41517yE=5217

 

h=xExBh=47171h=3017p=yByEp=45217p=1617¯BE2=p¯BG|BE=222=1617¯BG¯BG=41617¯BG=174Gray area =28¯BGh=281743017=28304=16152=32152=172Gray area =8.5

 

laugh

18.01.2021
 #1
avatar+26399 
+2

If ω3=1 and ω1,

then compute (1ω+ω2)(1+ωω2).

 

My attempt:

(1ω+ω2)(1+ωω2)=(1(ωω2))(1+(ωω2))=1(ωω2)2=1(ω22ω3+ω4)|ω3=1=1(ω22+ω4)|ω4=ω3ω=ω=1(ω22+ω)=3(ω2+ω)

 

(ω2+ω)2=ω4+2ω3+ω2|ω3=1(ω2+ω)2=ω4+2+ω2|ω4=ω3ω=ω(ω2+ω)2=ω+2+ω2(ω2+ω)2=ω2+ω+2(ω2+ω)2(ω2+ω)2=0|ω2+ω=xx2x2=0x=1±14(2)2x=1±92x=1±32x1=1+32x1=2ω2+ω=2no solution!ω1x2=132x2=1ω2+ω=1(1ω+ω2)(1+ωω2)=3(ω2+ω)=3(1)(1ω+ω2)(1+ωω2)=4

 

laugh

17.01.2021
 #2
avatar+26399 
+2

The fifth term of an arithmetic sequence is 9 and the 32nd term is 84.

What is the 23rd term?

 

(1)ai=a1+(i1)d(2)aj=a1+(j1)d(3)ak=a1+(k1)da1=ai(i1)d=aj(j1)dai(i1)d=aj(j1)dajai=(j1)d(i1)dajai=((j1)(i1))d(4)ajai=(ji)da1=aj(j1)d=ak(k1)daj(j1)d=ak(k1)dakaj=(k1)d(j1)dakaj=((k1)(j1))d(5)akaj=(kj)d(4)(5):ajaiakaj=(ji)d(kj)dajaiakaj=(ji)(kj)ak=aj(ki)(ji)+ai(kj)(ij)

 

i=5ai=9j=32aj=84k=23ak= ?ak=aj(ki)(ji)+ai(kj)(ij)a23=84(235)(325)+9(2332)(532)a23=841827+9927a23=8418+9927a23=842+93a23=1773a23=59

 

 

laugh

15.01.2021
 #2
avatar+26399 
+2

D,E,F are the feet of the altitudes in triangle ABC.
Find angle DEF (in degrees).

 

Let [DEF]=xLet AB=aAC=bBC=cLet [CBE]=9065=25Let [EBF]=9075=15Let BF=ccos(40)BD=acos(40)Let BE=acbsin(40) Let [BDE]=D[BFE]=ELet x=360(D+E+40)=320(D+E)

 

tan(D)=BEsin(25)BDBEcos(25)tan(D)=acbsin(40)sin(25)acos(40)acbsin(40)cos(25)×aatan(D)=cbsin(40)sin(25)cos(40)cbsin(40)cos(25)cb=sin(75)sin(40)tan(D)=sin(75)sin(25)cos(40)sin(75)cos(25)D=75 or D=105

 

tan(E)=BEsin(15)BFBEcos(15)tan(E)=acbsin(40)sin(15)ccos(40)acbsin(40)cos(15)×cctan(E)=absin(40)sin(15)cos(40)absin(40)cos(15)ab=sin(65)sin(40)tan(E)=sin(65)sin(15)cos(40)sin(65)cos(15)E=65 or E=115

 

x=320(D+E)x=320(105+115)x=320220x=100

 

laugh

14.01.2021
 #3
avatar+26399 
+1
14.01.2021