Wie heißen die nächsten 10 Glieder der Reihe?
19,58,29,88,44,,22,11,34,17,52,26,…
13, 40, 20, 10, 5, 16, 8, 4, 2, 1
Ein Baum ist 50Meter hoch. In einem Sturm ist er abgeknickt. Die BBaum Spitze ekommt 32 Meter vom baum an. an welcher stelle ist der baum abgeknickt?
$$\small{\text{ $ \begin{array}{rcl} 32^2+(50-x)^2 &=& x^2 \\ 1024+2500-100x+x^2 &=& x^2 \\ 100x &=& 1024+2500\\ 100x &=& 3524 \\ x &=& 35,24 m \end{array} $ }}$$
Der Baum ist an der Stelle 50-x = 50 - 35,24 m = 14,76 m abgeknickt.
http://web2.0calc.com/questions/whats-x-0
https://www.youtube.com/watch?v=tRblwTsX6hQ
x=1+(1/2)x
$$\\ \begin{array}{rcl} x &=& 1+\frac{1}{2}x \quad | \quad -\frac{1}{2}x \\ x - \frac{1}{2}x &=& 1 \quad | \quad \times 2 \\ 2x-x &=& 2 \quad | \quad +1\\ x &=& 2 \end{array} $\\$ \small{\text{ Proof: $ \begin{array}{rcl} 2 &=& 1 + \frac{1}{2}*2 \\ 2 &=& 2 \end{array} $ }}$$
Need full solution
$$\\ \small{\text{ $ \dfrac{ \left( \sqrt{3}-2\sqrt{5}\right ) \left( 2\sqrt{5}+\sqrt{3} \right) }{17\sqrt{20}} $ }}$\\\\$ \small{\text{ $ =\dfrac{ \left( \sqrt{3}-2\sqrt{5}\right ) \left( \sqrt{3}+ 2\sqrt{5} \right) }{17\sqrt{20}} \quad |\quad (a-b)(a+b) = a^2-b^2 \quad \left( \sqrt{3}-2\sqrt{5}\right ) \left( \sqrt{3}+ 2\sqrt{5} \right) = 3-4*5 $ }}$\\\\$ \small{\text{ $ =\dfrac{ 3-4*5 }{17\sqrt{20}} $ }}$\\\\$ \small{\text{ $ =\dfrac{ -17 }{17\sqrt{20}} $ }}$\\\\$ \small{\text{ $ =-\dfrac{ 1 }{\sqrt{20}} \quad | \quad * \frac{\sqrt{20}} {\sqrt{20} } $ }}$\\\\$ \small{\text{ $ =-\dfrac{\sqrt{20} }{20} $ }}$\\\\$ \small{\text{ $ =-\dfrac{\sqrt{4*5} }{20} $ }}$\\\\$ \small{\text{ $ =-\dfrac{\sqrt{4}*\sqrt{5} } {20} $ }}$\\\\$ \small{\text{ $ =-\dfrac{2\sqrt{5} } {20} $ }}$\\\\$ \small{\text{ $ =-\dfrac{\sqrt{5} } {10} $ }}$$
(3x-2)(4x+3)-(x+3)(2x-5)=(2x+1)(5x-2)
$$\\\small{\text{ $ (3x-2)(4x+3) - (x+3)(2x-5) =(2x+1)(5x-2) \quad | \quad +(x+3)(2x-5)\\ $ }}$\\$ \small{\text{ $ (3x-2)(4x+3) =(2x+1)(5x-2) + (x+3)(2x-5) $ }}$\\$ \small{\text{ $ 12x^2 +9x -8x -6 = 10x^2 -4x +5x -2 + 2x^2 -5x +6x -15$ }}$\\$ \small{\text{ $ \underbrace{12x^2 -10x^2- 2x^2}_{0} \underbrace{+9x -8x +4x -5x +5x -6x}_{-x} \underbrace{-6 +2 +15}_{11} = 0 $ }}$\\\\$ \small{\text{ $ -x +11 = 0\\ $ }}$\\$ \small{\text{ $ x=11$ }}$$
height: 8.4 diameter: 3.5 find the volume
$$\small{\text{ $ \begin{array}{rcl} $ Volume $ = v &=& \pi*(\frac{d}{2})^2*h \\ v & = & 3.141592654 * 4.2^2 * 3.5 \\ v & = & 193.962 $ units $ \end{array} $ }}$$
what is b squared plus b squared
$$\\ \small{\text{ I. $ b^2+b^2=b^2(1+1)=b^2*2= 2*b^2 $ }}$\\$ \small{\text{ II. $ b^2+b^2=b*(b+b)=b*(2*b)= 2*b^2 $ }}$$
(x+[1+√2])(x-[1-√2])
$$\\ \small{\text{ $ (x+[1+\sqrt{2}])(x-[1-\sqrt{2}]) = [ ( x+\sqrt{2} ) +1] [(x+\sqrt{2})-1]=( x+\sqrt{2} )^2-1= x^2-2\sqrt{2}x+2-1 $ }}$\\$ \small{\text{ $=x^2-2\sqrt{2}x+1 $ }}$$