heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+2

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2

and also be divided by 5 with a remainder of 1

 

\(\begin{array}{rcll} n &\equiv& {\color{red}2} \pmod {{\color{green}4}} \\ n &\equiv& {\color{red}1} \pmod {{\color{green}5}} \\ \text{Let } m &=& 4\cdot 5 = 20 \\ \end{array} \)

 

Because 4 and 5 are relatively prim ( gcd(4,5) = 1 ) we can go on:

 

\(\begin{array}{rcll} x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] +{\color{red}1} \cdot {\color{green}4} \cdot [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ && [ \frac{1}{ {\color{green}5} } \pmod{{\color{green}4}} ] \\ &=& [ {\color{green}5}^{\varphi({\color{green}4})-1} \pmod {{\color{green}4}} ] \quad & | \quad \varphi({\color{green}4})=4\cdot(1-\frac12)=2 \\ &=& [ {\color{green}5}^{2-1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}5}^{1} \pmod {{\color{green}4}} ] \\ &=& [ {\color{green}1} \pmod {{\color{green}4}} ] \\ &=& [ 1] \\\\ && [ \frac{1}{ {\color{green}4} } \pmod{{\color{green}5}} ] \\ &=& [ {\color{green}4}^{\varphi({\color{green}5})-1} \pmod {{\color{green}5}} ] \quad & | \quad \varphi({\color{green}5})=5\cdot(1-\frac15)=4 \\ &=& [ {\color{green}4}^{4-1} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4}^{3} \pmod {{\color{green}5}} ] \\ &=& [ {\color{green}4} \pmod {{\color{green}5}} ] \\ &=& [ 4 ] \\\\ x &=& {\color{red}2} \cdot {\color{green}5} \cdot [ 1] + {\color{red}1} \cdot {\color{green}4} \cdot [4] +4\cdot 5 \cdot n \quad & | \quad n \in Z \\\\ x &=& 10+16+20\cdot n \\ x &=& 26 + 20\cdot n \quad & | \quad x_{\text{min}} = 26 \pmod {m} \\ && & | \quad = 26 \pmod {20} = 6 \pmod {20} \\ x &=& 6 + 20\cdot n \quad & | \quad n \in Z \\\\ x_1 &=& 6 + 20\cdot 0 \quad & | \quad n=0 \\ x_1 &=& 6\checkmark \quad & | \quad 2\le x\le40 \\\\ x_2 &=& 6 + 20\cdot 1 \quad & | \quad n=1 \\ x_2 &=& 26\checkmark \quad & | \quad 2\le x\le40 \\ \end{array}\)

 

laugh

21.04.2017
 #1
avatar+26387 
+1

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

 

\(\begin{array}{rcll} \text{Let } \alpha &=& \text{angle}_1 \\ \text{Let } \beta &=& \text{angle}_2 \\ \text{Let } \gamma &=& \text{angle}_3 \\ \gamma &=& 180^{\circ}-(\alpha+\beta) \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \alpha : \beta : \gamma \\ &=& \alpha : \beta : 180^{\circ}-(\alpha+\beta) \\ &=& 3:5:4 \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1): & \frac{\alpha}{\beta} &=& \frac{3}{5} \\ & \alpha &=& \frac{3}{5}\cdot \beta \\\\ (2): & \frac{\alpha}{\gamma} = \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{4}{3} \cdot \alpha &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \alpha = \frac{3}{5}\cdot \beta \\ & \frac{4}{3} \cdot \frac{3}{5}\cdot \beta &=& 180^{\circ}-(\frac{3}{5}\cdot \beta +\beta) \\ & \frac{4}{5} \cdot \beta &=& 180^{\circ}-\frac{8}{5}\cdot \beta \\ & \frac{4}{5} \cdot \beta +\frac{8}{5}\cdot \beta &=& 180^{\circ} \\ & \frac{12}{5} \cdot \beta &=& 180^{\circ} \\ & \beta &=& 180^{\circ}\cdot \frac{5}{12} \\ & \mathbf{ \beta } & \mathbf{=} & \mathbf{ 75^{\circ} } \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & \alpha &=& \frac{3}{5}\cdot \beta \quad & | \quad \mathbf{ \beta = 75^{\circ} } \\ & \alpha &=& \frac{3}{5}\cdot 75^{\circ} \\ & \mathbf{ \alpha } & \mathbf{=} & \mathbf{ 45^{\circ} } \\ \\ & \gamma &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \mathbf{ \alpha = 45^{\circ} } \qquad \mathbf{ \beta = 75^{\circ} } \\ & \gamma &=& 180^{\circ}-( 45^{\circ}+75^{\circ} ) \\ & \gamma &=& 180^{\circ}-120^{\circ} \\ & \mathbf{ \gamma } & \mathbf{=} & \mathbf{ 60^{\circ} } \\ \hline \end{array} \)

 

The angles of the triangle are \(45^{\circ},\ 75^{\circ},\ 60^{\circ}\)

 

laugh

20.04.2017