Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+2

which whole numbers between 2 and 40 can be divided by 4 with a remainder of 2

and also be divided by 5 with a remainder of 1

 

n2(mod4)n1(mod5)Let m=45=20

 

Because 4 and 5 are relatively prim ( gcd(4,5) = 1 ) we can go on:

 

x=25[15(mod4)]+14[14(mod5)]+45n|nZ[15(mod4)]=[5φ(4)1(mod4)]|φ(4)=4(112)=2=[521(mod4)]=[51(mod4)]=[1(mod4)]=[1][14(mod5)]=[4φ(5)1(mod5)]|φ(5)=5(115)=4=[441(mod5)]=[43(mod5)]=[4(mod5)]=[4]x=25[1]+14[4]+45n|nZx=10+16+20nx=26+20n|xmin=26(modm)|=26(mod20)=6(mod20)x=6+20n|nZx1=6+200|n=0x1=6|2x40x2=6+201|n=1x2=26|2x40

 

laugh

21.04.2017
 #1
avatar+26396 
+1
20.04.2017
 #1
avatar+26396 
+1

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

 

Let α=angle1Let β=angle2Let γ=angle3γ=180(α+β)

 

α:β:γ=α:β:180(α+β)=3:5:4

 

(1):αβ=35α=35β(2):αγ=α180(α+β)=34α180(α+β)=3443α=180(α+β)|α=35β4335β=180(35β+β)45β=18085β45β+85β=180125β=180β=180512β=75

 

α=35β|β=75α=3575α=45γ=180(α+β)|α=45β=75γ=180(45+75)γ=180120γ=60

 

The angles of the triangle are 45, 75, 60

 

laugh

20.04.2017