Need help with this continuous fraction integral.
integral \limits_{x=0}^1 \frac{x\pm\sqrt{x^2+4x} }{2} \ dx

Continuous Fraction.
sum=x+xx+xx+xx+⋯sum=x+xsumsum−xsum=xsum2−xsum=xsum2−x=x⋅sumsum2−x⋅sum−x=0sum=x±√x2−4⋅(−x)2sum=x±√x2+4x2
1∫x=0x+xx+xx+xx+⋯ dx=1∫x=0sum dx=1∫x=0x±√x2+4x2 dx=121∫x=0x dx±121∫x=0√x2+4x dx=12[x22]1x=0±121∫x=0√(x+2)2−4 dx=14±121∫x=0√(x+2)2−4 dxsubstitute: u=x+2du=dx new limits: x=0:u=0+2⇒u=2x=1:u=1+2⇒u=3 =14±123∫u=2√u2−4 dusubstitute: u=2cosh(z)z=arcosh(u2)du=2sinh(z) dz new limits: u=2:z=arcosh(22)⇒z=arcosh(1)=0u=3:z=arcosh(32)⇒z=arcosh(1.5) =14±12arcosh(1.5)∫z=0√4cosh(z)2−4⋅2⋅sinh(z) dz=14±arcosh(1.5)∫z=0√4cosh(z)2−4⋅sinh(z) dz cosh2(z)−sinh2(z)=1cosh2(z)−1=sinh2(z)|⋅44cosh2(z)−4=4sinh2(z) =14±arcosh(1.5)∫z=0√4sinh2(z)⋅sinh(z) dz=14±arcosh(1.5)∫z=02sinh(z)⋅sinh(z) dz=14±arcosh(1.5)∫z=02sinh2(z) dz
cosh(2z)=cosh2(z)+sinh2(z)cosh(2z)=1+sinh2(z)+sinh2(z)cosh(2z)=1+2sinh2(z)2sinh2(z)=cosh(2z)−1 =14±arcosh(1.5)∫z=0(cosh(2z)−1) dz=14±(arcosh(1.5)∫z=0cosh(2z) dz−arcosh(1.5)∫z=0 dz)=14±([12⋅sinh(2z)]arcosh(1.5)z=0−[z]arcosh(1.5)z=0) sinh(2z)=2sinh(z)cosh(z) =14±([12⋅2sinh(z)cosh(z)]arcosh(1.5)z=0−arcosh(1.5))=14±([sinh(z)cosh(z)]arcosh(1.5)z=0−arcosh(1.5))=14±[sinh(arcosh(1.5))⋅1.5−arcosh(1.5)] cosh2(x)−sinh2(x)=1sinh2(x)=cosh2(x)−1sinh(x)=√cosh2(x)−1 sinh(arcosh(x))=√cosh2(arcosh(x))−1=√x2−1sinh(arcosh(1.5))=√1.52−1=√1.25=√52 =14±[√52⋅32−arcosh(1.5)]=14±[3√54−arcosh(1.5)]=14±(1.6770509831248424−0.9624236501192069)=14±0.7146273330056354
=14+0.7146273330056354or=14−0.7146273330056354=0.9646273330056354or=−0.4646273330056354
