Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26397 
+3

An engineer estimates the angle of elevation to the top of the building to be 50°.
After moving 1.5 meters further away, the angle of elevation was 40°.
How high is the top of the building?

 

(1)tan(50)=hxx=htan(50)(2)tan(40)=h1.5+xtan(40)=h1.5+htan(50)tan(40)(1.5+htan(50))=h1.5tan(40)+htan(40)tan(50)=hhhtan(40)tan(50)=1.5tan(40)h(1tan(40)tan(50))=1.5tan(40)h(tan(50)tan(40)tan(50))=1.5tan(40)h=1.5(tan(50)tan(40)tan(50)tan(40))h=1.5(1.191753592590.839099631181.191753592590.83909963118))h=1.5(10.35265396142)h=1.52.83564090981h=4.25346136471 m

 

The top of the building is 4.25 m high.

 

laugh

05.05.2017
 #2
avatar+26397 
+2

Need help with this continuous fraction integral.

integral \limits_{x=0}^1  \frac{x\pm\sqrt{x^2+4x} }{2}  \ dx

 

Continuous Fraction.

sum=x+xx+xx+xx+sum=x+xsumsumxsum=xsum2xsum=xsum2x=xsumsum2xsumx=0sum=x±x24(x)2sum=x±x2+4x2

 

1x=0x+xx+xx+xx+ dx=1x=0sum dx=1x=0x±x2+4x2 dx=121x=0x dx±121x=0x2+4x dx=12[x22]1x=0±121x=0(x+2)24 dx=14±121x=0(x+2)24 dxsubstitute: u=x+2du=dx new limits: x=0:u=0+2u=2x=1:u=1+2u=3 =14±123u=2u24 dusubstitute: u=2cosh(z)z=arcosh(u2)du=2sinh(z) dz new limits: u=2:z=arcosh(22)z=arcosh(1)=0u=3:z=arcosh(32)z=arcosh(1.5) =14±12arcosh(1.5)z=04cosh(z)242sinh(z) dz=14±arcosh(1.5)z=04cosh(z)24sinh(z) dz cosh2(z)sinh2(z)=1cosh2(z)1=sinh2(z)|44cosh2(z)4=4sinh2(z) =14±arcosh(1.5)z=04sinh2(z)sinh(z) dz=14±arcosh(1.5)z=02sinh(z)sinh(z) dz=14±arcosh(1.5)z=02sinh2(z) dz

 cosh(2z)=cosh2(z)+sinh2(z)cosh(2z)=1+sinh2(z)+sinh2(z)cosh(2z)=1+2sinh2(z)2sinh2(z)=cosh(2z)1 =14±arcosh(1.5)z=0(cosh(2z)1) dz=14±(arcosh(1.5)z=0cosh(2z) dzarcosh(1.5)z=0 dz)=14±([12sinh(2z)]arcosh(1.5)z=0[z]arcosh(1.5)z=0) sinh(2z)=2sinh(z)cosh(z) =14±([122sinh(z)cosh(z)]arcosh(1.5)z=0arcosh(1.5))=14±([sinh(z)cosh(z)]arcosh(1.5)z=0arcosh(1.5))=14±[sinh(arcosh(1.5))1.5arcosh(1.5)] cosh2(x)sinh2(x)=1sinh2(x)=cosh2(x)1sinh(x)=cosh2(x)1  sinh(arcosh(x))=cosh2(arcosh(x))1=x21sinh(arcosh(1.5))=1.521=1.25=52 =14±[5232arcosh(1.5)]=14±[354arcosh(1.5)]=14±(1.67705098312484240.9624236501192069)=14±0.7146273330056354

 

=14+0.7146273330056354or=140.7146273330056354=0.9646273330056354or=0.4646273330056354

 

laugh

04.05.2017
 #6
avatar+26397 
+1

One more :)

Continuous Fraction.

sum=x+1x+1x+1x+sum=x+1sumsum1sum=xsum21sum=xsum21=xsumsum2xsum1=0sum=x±x24(1)2sum=x±x2+42

 

1x=0x+1x+1x+1x+ dx=1x=0sum dx=1x=0x±x2+42 dx=121x=0x dx±1x=0x2+42 dx=12[x22]1x=0±1x=02(x2)2+12 dx=14±1x=0(x2)2+1 dxsubstitute: x2=sinh(z)z=arsinh(x2)dx=2cosh(z) dz new limits: x=0:z=arsinh(02)z=0x=1:z=arsinh(12) =14±arsinh(12)x=0sinh2(z)+12cosh(z) dz cosh2(z)=1+sinh2(z) =14±arsinh(12)x=0cosh2(z)2cosh(z) dz=14±arsinh(12)x=0cosh(z)2cosh(z) dz=14±2arsinh(12)x=0cosh2(z) dz cosh2(z)=12+12cosh(2z) =14±2arsinh(12)x=012+12cosh(2z) dz=14±arsinh(12)x=01+cosh(2z) dz=14±(arsinh(12)x=0 dz+arsinh(12)x=0cosh(2z) dz)=14±([z]arsinh(12)x=0+[sinh(2z)2]arsinh(12)x=0) sinh(2z)=2sinh(z)cosh(z) =14±([z]arsinh(12)x=0+[2sinh(z)cosh(z)2]arsinh(12)x=0)=14±([z]arsinh(12)x=0+[sinh(z)cosh(z)]arsinh(12)x=0)=14±(arsinh(12)+12cosh(arsinh(12)))=14±(0.4812118250596+12cosh(0.4812118250596))=14±(1.0402288194345508)

 

=14+1.0402288194345508or=141.0402288194345508=1.2902288194345508or=0.7902288194345508

 

laugh

03.05.2017
 #7
avatar+26397 
+2
03.05.2017
 #5
avatar+26397 
+4

Something Mathematical to do.

x=01(x+1+x2)2 dxsubstitute: x=tan(z)dx=(1+tan2(z)) dz new limits: z=arctan(0)z=0z=arctan()z=π2 =π2z=01+tan2(z)(tan(z)+1+tan2(z))2 dz 1+tan2(z)=1cos2(z) =π2z=01cos2(z)(11cos2(z)+tan2(z)+2sin(z)cos2(z)) dz=π2z=011+2sin(z)+sin2(z) dz=π2z=01(1+sin(z))2 dzsubstitute: t=tan(z2)dt=12(1+tan2(z2)) dz=12(1+t2) dz new limits: t=tan(02)t=0t=tan(π22)t=1 =1t=02 dt1+t2(1(1+sin(z))2) sin(z)=2t1+t2 =1t=02 dt1+t2(1(1+2t1+t2)2)=21t=01+t21+4t+6t2+4t3+t4 dt=21t=01+t2(1+t)4 dt

 

Partial fraction decomposition: 1+t2(1+t)4=A1+t+B(1+t)2+C(1+t)3+D(1+t)41+t2=A(1+t)3+B(1+t)2+C(1+t)+D(1)t=1:2=D(2)t=0:1=A+B+C(3)t=1:0=8A+4B+2C|:20=4A+2B+C(4)t=2:3=A+BC(2)+(4):1+3=2BB=1(3)+(4):0+3=3A+3B|:31=A+B|B=11=A+1A=0(2):C=1AB=101C=2 

 

=21t=0(1(1+t)221(1+t)3+21(1+t)4) dt=21t=01(1+t)2 dt41t=01(1+t)3 dt+41t=01(1+t)4 dt=2[11+t]1t=042[1(1+t)2]1t=0+43[1(1+t)3]1t=0=2[12(1)]42[14(1)]+43[18(1)]=2[12+1]2[14+1]+43[18+1]=212234+4378=132+76=6696+76=13696=46=23

 

x=01(x+1+x2)2 dx=23

 

laugh

02.05.2017