heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+2

Hi - what is the best way to solve simultaneous equations where one is quadratic and the other linear?

For example:

y=x+3

y=x2+3x

 

1. Formula line ( linear equation)

\(y_{\text{line}}=m\cdot x_{\text{line}}+b \)

 

2. Formula parabola (quadatic equation)

\(y_{\text{parabola}}=A\cdot x_{\text{parabola}}^2+B\cdot x_{\text{parabola}} + C \)

 

3. set equal  \(y_{\text{line}}=y_{\text{parabola}}=y_{\text{intersection}}\) :

\(\begin{array}{|rcll|} \hline m\cdot x_{\text{intersection}}+b &=& A\cdot x_{\text{intersection}}^2+B\cdot x_{\text{intersection}} + C \\\\ Ax_{\text{intersection}}^2+x_{\text{intersection}}(B-m)+C-b &=& 0 \\ x_{\text{intersection}_{1,2}} &=& \dfrac{m-B\pm \sqrt{(m-B)^2-4\cdot A \cdot(C-b)} }{2A} \\ y_{\text{intersection}_{1,2}} &=& m\cdot x_{\text{intersection}_{1,2}} + b \\ \hline \end{array} \)

 

4. Example:

\(\begin{array}{|rcll|} \hline y &=& x + 3 \quad & \quad m=1 \quad b = 3 \\ y &=& x^2+3x \quad & \quad A=1 \quad B = 3 \quad C = 0 \\ x_{\text{intersection}_{1,2}} &=& \dfrac{1-3\pm \sqrt{(1-3)^2-4\cdot 1 \cdot(0-3)} }{2\cdot 1} \\ x_{\text{intersection}_{1,2}} &=& \dfrac{-2\pm \sqrt{4+12} }{2} \\ x_{\text{intersection}_{1,2}} &=& \dfrac{-2\pm 4 }{2} \\ x_{\text{intersection}_{1}} &=& \dfrac{-2 + 4 }{2} \\ &=& 1 \\\\ x_{\text{intersection}_{2}} &=& \dfrac{-2 - 4 }{2} \\ &=& -3 \\\\ y_{\text{intersection}_{1}} &=& 1\cdot x_{\text{intersection}_{1}} + 3 \\ &=& 1\cdot 1 + 3 \\ &=& 4 \\\\ y_{\text{intersection}_{2}} &=& 1\cdot x_{\text{intersection}_{2}} + 3 \\ &=& 1\cdot (-3) + 3 \\ &=& 0 \\ \hline \end{array}\)

 

laugh

11.04.2017
 #3
avatar+26387 
+2

I want to caculate 11power 850 mod 1643 

 

\(\begin{array}{|rcll|} \hline && 11^{850} \pmod{1643} \\ & \equiv & 11^{4\cdot 212+2} \pmod{1643} \\ & \equiv & (11^4)^{212}\cdot 121 \pmod{1643} \quad & | \quad 11^4\pmod{1643} &\equiv& -146 \pmod{1643} \\ & \equiv & (-146)^{212}\cdot 121 \pmod{1643} \\ & \equiv & (-146)^{2\cdot 106}\cdot 121 \pmod{1643} \\ & \equiv & [(-146)^2]^{106}\cdot 121 \pmod{1643} \quad & | \quad (-146)^2\pmod{1643} &\equiv& -43 \pmod{1643} \\ & \equiv & (-43)^{106}\cdot 121 \pmod{1643} \\ & \equiv & (-43)^{4\cdot 26+2}\cdot 121 \pmod{1643} \\ & \equiv & [(-43)^4]^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^4 \pmod{1643} &\equiv& -282 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot (-43)^2 \cdot 121 \pmod{1643} \quad & | \quad (-43)^2 \pmod{1643} &\equiv& 206 \pmod{1643} \\ & \equiv & (-282)^{26}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (-282)^{2\cdot 13}\cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & [(-282)^2]^{13} \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad (-282)^2 \pmod{1643} &\equiv& 660 \pmod{1643} \\ & \equiv & 660^{13} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & 660^{2\cdot6 + 1} \cdot 206 \cdot 121 \pmod{1643} \\ & \equiv & (660^2)^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660^2\pmod{1643} &\equiv& 205 \pmod{1643} \\ & \equiv & 205^6\cdot 660 \cdot 206 \cdot 121 \pmod{1643} \quad & | \quad 660 \cdot 206 \cdot 121\pmod{1643} &\equiv& -199 \pmod{1643} \\ & \equiv & 205^6\cdot (-199) \pmod{1643} \\ & \equiv & 205^{2\cdot 3}\cdot (-199) \pmod{1643} \\ & \equiv & (205^2)^3\cdot (-199) \pmod{1643} \quad & | \quad 205^2\pmod{1643} &\equiv& -693 \pmod{1643} \\ & \equiv & (-693)^3\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^{2+1}\cdot (-199) \pmod{1643} \\ & \equiv & (-693)^2\cdot(-693)\cdot (-199) \pmod{1643} \quad & | \quad (-693)\cdot (-199)\pmod{1643} &\equiv& -105 \pmod{1643} \\ & \equiv & (-693)^2\cdot(-105) \pmod{1643} \quad & | \quad (-693)^2\pmod{1643} &\equiv& 493 \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \\ & \equiv & 493\cdot(-105) \pmod{1643} \quad & | \quad 493\cdot(-105) \pmod{1643} &\equiv& -832 \pmod{1643} &\equiv& 811 \pmod{1643} \\ & \equiv & 811 \pmod{1643} \\ \hline \end{array}\)

 

laugh

10.04.2017