heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
+5

hi Melody,

typesetting polynom division can easy be done with the polynom package:

see: http://tex.stackexchange.com/questions/79182/how-to-draw-polynom-division

 

Example: \((27x^3 - 8y^3)/(3x-2y)\)

\usepackage{polynom}

 

\begin{document}

  

   \textbf{Style A:}\par % this is the default
   \polylongdiv[style=A]{27x^3 - 8y^3}{3x-2y}

  

   \textbf{Style B:}\par
   \polylongdiv[style=B]{27x^3 - 8y^3}{3x-2y}

  

   \textbf{Style C:}\par
   \polylongdiv[style=C]{27x^3 - 8y^3}{3x-2y}

 

\end{document}

 

 

laugh

28.02.2017
 #4
avatar+26387 
+10

evaluate cosec(10)+cosec(50)-cosec(70)

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(10^{\circ}) = \cos(90^{\circ}-10^{\circ}) = \cos(80^{\circ}) \\ \sin(50^{\circ}) = \cos(90^{\circ}-50^{\circ}) = \cos(40^{\circ}) \\ \sin(70^{\circ}) = \cos(90^{\circ}-70^{\circ}) = \cos(20^{\circ}) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && csc(10^{\circ})+csc(50^{\circ})-csc(70^{\circ}) \\ &=& \frac{1}{\sin(10^{\circ})} + \frac{1}{\sin(50^{\circ})} - \frac{1}{\sin(70^{\circ})} \\ &=& \frac{1}{\cos(80^{\circ})} + \frac{1}{\cos(40^{\circ})} - \frac{1}{\cos(20^{\circ})} \\ &=& \frac{\cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ})} {\cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} \\\\ && \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ}) \\ &&= \frac{ 2\cdot\sin(20^{\circ}) \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(40^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(80^{\circ})\cos(80^{\circ})} {4\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(160^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(20^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ 1 } {8} \\\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\ &=& 8\cdot \{~ \cos(20^{\circ})[\cos(40^{\circ})+\cos(80^{\circ})]-\cos(40^{\circ})\cos(80^{\circ}) ~\} \\\\ && \cos(40^{\circ}) = \cos(60^{\circ}-20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})+\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(80^{\circ}) = \cos(60^{\circ}+20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})-\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ})+\cos(80^{\circ}) = 2 \cos(60^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot [~ \cos(20^{\circ})2 \cos(60^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \quad | \quad \cos(60^{\circ}) = \frac12\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\\\ && \cos(40^{\circ}) = \cos(80^{\circ}-40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})+\sin(80^{\circ})\sin(40^{\circ}) \\ && -\cos(60^{\circ})=\cos(120^{\circ}) = \cos(80^{\circ}+40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})-\sin(80^{\circ})\sin(40^{\circ}) \\ && \cos(40^{\circ})-\cos(60^{\circ})= 2\cos(80^{\circ})\cos(40^{\circ}) \\\\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot [\cos(40^{\circ})-\cos(60^{\circ})] ~\} \\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac12 \cos(60^{\circ}) ~\} \quad | \quad \cos(60^{\circ}) = \frac12 \\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\\\ && 1 = \cos(20^{\circ}-20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})+\sin(20^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ}) = \cos(20^{\circ}+20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})-\sin(20^{\circ})\sin(20^{\circ}) \\ && 1+\cos(40^{\circ}) = 2 \cos(20^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot \{~ \frac12[1+\cos(40^{\circ})] -\frac12 \cdot \cos(40^{\circ})+\frac14 ~ \} \\ &=& 8\cdot [~ \frac12 + \frac12 \cdot \cos(40^{\circ}) -\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\ &=& 8\cdot (~ \frac12 +\frac14 ~) \\ &=& 8\cdot (~ \frac34 ~) \\ &=& \mathbf{6} \\ \hline \end{array} \)

 

laugh

27.02.2017