evaluate cosec(10)+cosec(50)-cosec(70)
Formula:
sin(10∘)=cos(90∘−10∘)=cos(80∘)sin(50∘)=cos(90∘−50∘)=cos(40∘)sin(70∘)=cos(90∘−70∘)=cos(20∘)
csc(10∘)+csc(50∘)−csc(70∘)=1sin(10∘)+1sin(50∘)−1sin(70∘)=1cos(80∘)+1cos(40∘)−1cos(20∘)=cos(20∘)cos(40∘)+cos(20∘)cos(80∘)−cos(40∘)cos(80∘)cos(20∘)cos(40∘)cos(80∘)cos(20∘)cos(40∘)cos(80∘)=2⋅sin(20∘)cos(20∘)cos(40∘)cos(80∘)2⋅sin(20∘)=sin(40∘)cos(40∘)cos(80∘)2⋅sin(20∘)=sin(80∘)cos(80∘)4⋅sin(20∘)=sin(160∘)8⋅sin(20∘)=sin(20∘)8⋅sin(20∘)=18=8⋅[ cos(20∘)cos(40∘)+cos(20∘)cos(80∘)−cos(40∘)cos(80∘) ]=8⋅{ cos(20∘)[cos(40∘)+cos(80∘)]−cos(40∘)cos(80∘) }cos(40∘)=cos(60∘−20∘)=cos(60∘)cos(20∘)+sin(60∘)sin(20∘)cos(80∘)=cos(60∘+20∘)=cos(60∘)cos(20∘)−sin(60∘)sin(20∘)cos(40∘)+cos(80∘)=2cos(60∘)cos(20∘)=8⋅[ cos(20∘)2cos(60∘)cos(20∘)−cos(40∘)cos(80∘) ]|cos(60∘)=12=8⋅[ cos(20∘)cos(20∘)−cos(40∘)cos(80∘) ]cos(40∘)=cos(80∘−40∘)=cos(80∘)cos(40∘)+sin(80∘)sin(40∘)−cos(60∘)=cos(120∘)=cos(80∘+40∘)=cos(80∘)cos(40∘)−sin(80∘)sin(40∘)cos(40∘)−cos(60∘)=2cos(80∘)cos(40∘)=8⋅{ cos(20∘)cos(20∘)−12⋅[cos(40∘)−cos(60∘)] }=8⋅{ cos(20∘)cos(20∘)−12⋅cos(40∘)+12cos(60∘) }|cos(60∘)=12=8⋅[ cos(20∘)cos(20∘)−12⋅cos(40∘)+14 ]1=cos(20∘−20∘)=cos(20∘)cos(20∘)+sin(20∘)sin(20∘)cos(40∘)=cos(20∘+20∘)=cos(20∘)cos(20∘)−sin(20∘)sin(20∘)1+cos(40∘)=2cos(20∘)cos(20∘)=8⋅{ 12[1+cos(40∘)]−12⋅cos(40∘)+14 }=8⋅[ 12+12⋅cos(40∘)−12⋅cos(40∘)+14 ]=8⋅( 12+14 )=8⋅( 34 )=6
cosec(10)+cosec(50)-cosec(70)=6
This is true but I would like to see how a mathematician can prove it as at present it has me baffled.
PROOF:
cosec 10 + cosec 50 - cosec 70
sec 80 + sec 40 - sec 20
(1/cos 80) + (1/cos 40) - (1/cos 20)
(cos 40 + cos 80) / (cos 80 cos 40) - (1/cos 20)
Apply cos A + cos B = 2 cos ((A + B)/2) cos ((A - B)/2)
(2 cos 60 cos 20) / (cos 40 cos 80) - (1/cos 20)
(cos 20) / (cos 40 cos 80) - (1/cos 20)
Take LCM and add both
(cos²20 - cos 40 cos 80) / (cos 20 cos 40 cos 80)
I am gonna solve the denominator seperately,
cos 20 cos 40 cos 80
Multiply and divide by 2 sin 20
(2 sin 20 cos 20 cos 40 cos 80) / (2 sin 20)
2 sin A cos A = sin 2A
(sin 40 cos 40 cos 80) / (2 sin 20)
Multiply and divide by 2
(2 sin 40 cos 40 cos 80) / (4 sin 20)
(sin 80 cos 80) / (4 sin 20)
Again 2,
sin 160 / (8 sin 20)
sin (180 - 20) = sin 20
sin 160 = sin 20
= 1/8
So, denominator is equal to 1/8
Our expression becomes,
8 (cos²20 - cos 40 cos 80)
Take one 2 inside and use 2 cos A cos B = cos ((A + B)/2) + cos ((A - B)/2)
4 (2cos²20 - (cos 120 + cos 40))
2cos²A = 1 + cos 2A
4 (1 + cos 40 - cos 120 - cos 40)
4 (1 - cos 120)
4 (1 - (-1/2))
4 (3/2) = 6
evaluate cosec(10)+cosec(50)-cosec(70)
Formula:
sin(10∘)=cos(90∘−10∘)=cos(80∘)sin(50∘)=cos(90∘−50∘)=cos(40∘)sin(70∘)=cos(90∘−70∘)=cos(20∘)
csc(10∘)+csc(50∘)−csc(70∘)=1sin(10∘)+1sin(50∘)−1sin(70∘)=1cos(80∘)+1cos(40∘)−1cos(20∘)=cos(20∘)cos(40∘)+cos(20∘)cos(80∘)−cos(40∘)cos(80∘)cos(20∘)cos(40∘)cos(80∘)cos(20∘)cos(40∘)cos(80∘)=2⋅sin(20∘)cos(20∘)cos(40∘)cos(80∘)2⋅sin(20∘)=sin(40∘)cos(40∘)cos(80∘)2⋅sin(20∘)=sin(80∘)cos(80∘)4⋅sin(20∘)=sin(160∘)8⋅sin(20∘)=sin(20∘)8⋅sin(20∘)=18=8⋅[ cos(20∘)cos(40∘)+cos(20∘)cos(80∘)−cos(40∘)cos(80∘) ]=8⋅{ cos(20∘)[cos(40∘)+cos(80∘)]−cos(40∘)cos(80∘) }cos(40∘)=cos(60∘−20∘)=cos(60∘)cos(20∘)+sin(60∘)sin(20∘)cos(80∘)=cos(60∘+20∘)=cos(60∘)cos(20∘)−sin(60∘)sin(20∘)cos(40∘)+cos(80∘)=2cos(60∘)cos(20∘)=8⋅[ cos(20∘)2cos(60∘)cos(20∘)−cos(40∘)cos(80∘) ]|cos(60∘)=12=8⋅[ cos(20∘)cos(20∘)−cos(40∘)cos(80∘) ]cos(40∘)=cos(80∘−40∘)=cos(80∘)cos(40∘)+sin(80∘)sin(40∘)−cos(60∘)=cos(120∘)=cos(80∘+40∘)=cos(80∘)cos(40∘)−sin(80∘)sin(40∘)cos(40∘)−cos(60∘)=2cos(80∘)cos(40∘)=8⋅{ cos(20∘)cos(20∘)−12⋅[cos(40∘)−cos(60∘)] }=8⋅{ cos(20∘)cos(20∘)−12⋅cos(40∘)+12cos(60∘) }|cos(60∘)=12=8⋅[ cos(20∘)cos(20∘)−12⋅cos(40∘)+14 ]1=cos(20∘−20∘)=cos(20∘)cos(20∘)+sin(20∘)sin(20∘)cos(40∘)=cos(20∘+20∘)=cos(20∘)cos(20∘)−sin(20∘)sin(20∘)1+cos(40∘)=2cos(20∘)cos(20∘)=8⋅{ 12[1+cos(40∘)]−12⋅cos(40∘)+14 }=8⋅[ 12+12⋅cos(40∘)−12⋅cos(40∘)+14 ]=8⋅( 12+14 )=8⋅( 34 )=6