Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
4
4841
4
avatar

evaluate cosec(10)+cosec(50)-cosec(70)

 Feb 27, 2017

Best Answer 

 #4
avatar+26397 
+10

evaluate cosec(10)+cosec(50)-cosec(70)

 

Formula:

sin(10)=cos(9010)=cos(80)sin(50)=cos(9050)=cos(40)sin(70)=cos(9070)=cos(20)

 

csc(10)+csc(50)csc(70)=1sin(10)+1sin(50)1sin(70)=1cos(80)+1cos(40)1cos(20)=cos(20)cos(40)+cos(20)cos(80)cos(40)cos(80)cos(20)cos(40)cos(80)cos(20)cos(40)cos(80)=2sin(20)cos(20)cos(40)cos(80)2sin(20)=sin(40)cos(40)cos(80)2sin(20)=sin(80)cos(80)4sin(20)=sin(160)8sin(20)=sin(20)8sin(20)=18=8[ cos(20)cos(40)+cos(20)cos(80)cos(40)cos(80) ]=8{ cos(20)[cos(40)+cos(80)]cos(40)cos(80) }cos(40)=cos(6020)=cos(60)cos(20)+sin(60)sin(20)cos(80)=cos(60+20)=cos(60)cos(20)sin(60)sin(20)cos(40)+cos(80)=2cos(60)cos(20)=8[ cos(20)2cos(60)cos(20)cos(40)cos(80) ]|cos(60)=12=8[ cos(20)cos(20)cos(40)cos(80) ]cos(40)=cos(8040)=cos(80)cos(40)+sin(80)sin(40)cos(60)=cos(120)=cos(80+40)=cos(80)cos(40)sin(80)sin(40)cos(40)cos(60)=2cos(80)cos(40)=8{ cos(20)cos(20)12[cos(40)cos(60)] }=8{ cos(20)cos(20)12cos(40)+12cos(60) }|cos(60)=12=8[ cos(20)cos(20)12cos(40)+14 ]1=cos(2020)=cos(20)cos(20)+sin(20)sin(20)cos(40)=cos(20+20)=cos(20)cos(20)sin(20)sin(20)1+cos(40)=2cos(20)cos(20)=8{ 12[1+cos(40)]12cos(40)+14 }=8[ 12+12cos(40)12cos(40)+14 ]=8( 12+14 )=8( 34 )=6

 

laugh

 Feb 27, 2017
 #1
avatar
0

evaluate cosec(10)+cosec(50)-cosec(70)

=6

 Feb 27, 2017
 #2
avatar+118703 
0

cosec(10)+cosec(50)-cosec(70)=6

 

This is true but I would like to see how a mathematician can prove it as at present it has me baffled.

 Feb 27, 2017
 #3
avatar
+5

PROOF:
cosec 10 + cosec 50 - cosec 70
sec 80 + sec 40 - sec 20
(1/cos 80) + (1/cos 40) - (1/cos 20)
(cos 40 + cos 80) / (cos 80 cos 40) - (1/cos 20)
Apply cos A + cos B = 2 cos ((A + B)/2) cos ((A - B)/2)
(2 cos 60 cos 20) / (cos 40 cos 80) - (1/cos 20)
(cos 20) / (cos 40 cos 80) - (1/cos 20)
Take LCM and add both
(cos²20 - cos 40 cos 80) / (cos 20 cos 40 cos 80)

I am gonna solve the denominator seperately,
cos 20 cos 40 cos 80
Multiply and divide by 2 sin 20
(2 sin 20 cos 20 cos 40 cos 80) / (2 sin 20)
2 sin A cos A = sin 2A
(sin 40 cos 40 cos 80) / (2 sin 20)
Multiply and divide by 2
(2 sin 40 cos 40 cos 80) / (4 sin 20)
(sin 80 cos 80) / (4 sin 20)
Again 2,
sin 160 / (8 sin 20)
sin (180 - 20) = sin 20
sin 160 = sin 20
= 1/8
So, denominator is equal to 1/8

Our expression becomes,
8 (cos²20 - cos 40 cos 80)
Take one 2 inside and use 2 cos A cos B = cos ((A + B)/2) + cos ((A - B)/2)
4 (2cos²20 - (cos 120 + cos 40))
2cos²A = 1 + cos 2A
4 (1 + cos 40 - cos 120 - cos 40)
4 (1 - cos 120)
4 (1 - (-1/2))
4 (3/2) = 6

 Feb 27, 2017
 #4
avatar+26397 
+10
Best Answer

evaluate cosec(10)+cosec(50)-cosec(70)

 

Formula:

sin(10)=cos(9010)=cos(80)sin(50)=cos(9050)=cos(40)sin(70)=cos(9070)=cos(20)

 

csc(10)+csc(50)csc(70)=1sin(10)+1sin(50)1sin(70)=1cos(80)+1cos(40)1cos(20)=cos(20)cos(40)+cos(20)cos(80)cos(40)cos(80)cos(20)cos(40)cos(80)cos(20)cos(40)cos(80)=2sin(20)cos(20)cos(40)cos(80)2sin(20)=sin(40)cos(40)cos(80)2sin(20)=sin(80)cos(80)4sin(20)=sin(160)8sin(20)=sin(20)8sin(20)=18=8[ cos(20)cos(40)+cos(20)cos(80)cos(40)cos(80) ]=8{ cos(20)[cos(40)+cos(80)]cos(40)cos(80) }cos(40)=cos(6020)=cos(60)cos(20)+sin(60)sin(20)cos(80)=cos(60+20)=cos(60)cos(20)sin(60)sin(20)cos(40)+cos(80)=2cos(60)cos(20)=8[ cos(20)2cos(60)cos(20)cos(40)cos(80) ]|cos(60)=12=8[ cos(20)cos(20)cos(40)cos(80) ]cos(40)=cos(8040)=cos(80)cos(40)+sin(80)sin(40)cos(60)=cos(120)=cos(80+40)=cos(80)cos(40)sin(80)sin(40)cos(40)cos(60)=2cos(80)cos(40)=8{ cos(20)cos(20)12[cos(40)cos(60)] }=8{ cos(20)cos(20)12cos(40)+12cos(60) }|cos(60)=12=8[ cos(20)cos(20)12cos(40)+14 ]1=cos(2020)=cos(20)cos(20)+sin(20)sin(20)cos(40)=cos(20+20)=cos(20)cos(20)sin(20)sin(20)1+cos(40)=2cos(20)cos(20)=8{ 12[1+cos(40)]12cos(40)+14 }=8[ 12+12cos(40)12cos(40)+14 ]=8( 12+14 )=8( 34 )=6

 

laugh

heureka Feb 27, 2017

0 Online Users