Kyle is pulling a box east with a force of 300 newtons at a constant angle of 42° to the horizontal.
Jerome is pushing the box from behind with a force of 350 newtons due east.
Determine the magnitude and direction of the resultant force on the box.
Let m = magnitude
Let D = direction
1. trigonometric:
m2=3002+3502−2⋅300⋅350⋅cos(180∘−42∘)m2=212500+210000⋅cos(42∘)m2=212500+210000⋅cos(42∘)m2=212500+210000⋅0.74314482548m2=368560.413350m=607.091766828 Nsin(D)300=sin(180∘−42∘)msin(D)300=sin(42∘)msin(D)=300m⋅sin(42∘)sin(D)=300m⋅sin(42∘)sin(D)=300607.091766828⋅sin(42∘)sin(D)=0.49415922994⋅0.66913060636sin(D)=0.33065706517D=19.3086615149∘
2. vectorial:
→K=(3500)→J=(300⋅cos(42∘)300⋅sin(42∘))→K+→J=(3500)+(300⋅cos(42∘)300⋅sin(42∘))→K+→J=(350+300⋅cos(42∘)300⋅sin(42∘))→K+→J=(572.943447643200.739181908)m=√572.9434476432+200.7391819082m=607.091766828 Ntan(D)=200.739181908572.943447643tan(D)=0.35036473972D=19.3086615149∘
