heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+5

simplify tan[ 2*arccos(x/3) ]

 

\(\begin{array}{|rcll|} \hline \cos(\varphi) &=& \frac{x}{3} \\ \varphi &=& \arccos\left(\frac{x}{3} \right) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \tan(2 \varphi ) &=& \frac{\sin(2 \varphi)}{\cos(2 \varphi)} \quad & | \quad \sin(2 \varphi) = 2 \sin(\varphi)\cos(\varphi) \quad \cos(2\ \varphi) = 2 \cos^2(\varphi)-1 \\ \tan(2 \varphi ) &=& \frac{2 \sin(\varphi)\cos(\varphi)}{2 \cos^2(\varphi)-1} \quad & | \quad \cos(\varphi) = \frac{x}{3} \\ \tan(2 \varphi ) &=& \frac{2 \sin(\varphi)\frac{x}{3}}{2 (\frac{x}{3})^2-1} \quad & | \quad \sin(\varphi) = \sin(\arccos\left(\frac{x}{3} \right)) \\ \tan(2 \varphi ) &=& \frac{2 \sin(\arccos\left(\frac{x}{3} \right))\frac{x}{3}}{2 (\frac{x}{3})^2-1} \\ \hline \end{array} \)

 

 

\(\begin{array}{|rcll|} \hline \tan(2 \varphi ) &=& \frac{2 \sin(\arccos\left(\frac{x}{3} \right))\frac{x}{3}}{2 (\frac{x}{3})^2-1} \quad & | \quad \sin(\arccos\left(\frac{x}{3} \right)) = \sqrt{1-\left(\dfrac{x}{3}\right)^2} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{1-\left(\frac{x}{3}\right)^2}\frac{x}{3}}{2 (\frac{x}{3})^2-1} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{\frac{9-x^2}{9}}\frac{x}{3}}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \frac{\sqrt{9-x^2}}{3}\frac{x}{3}}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \frac{\sqrt{9-x^2}}{9}x}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{9-x^2} x}{ 2x^2-9 } \quad & | \quad \sqrt{9-x^2} = \sqrt{3-x}\cdot\sqrt{3+x}\\ \tan(2 \varphi ) &=& \frac{2 \sqrt{3-x}\cdot x \cdot \sqrt{3+x}}{ 2x^2-9 } \\ \mathbf{\tan(2 \arccos\left(\frac{x}{3} \right) ) }& \mathbf{=} & \mathbf{\frac{2 \sqrt{3-x}\cdot x \cdot \sqrt{3+x}}{ 2x^2-9 } } \\ \hline \end{array}\)

 

laugh

27.02.2017
 #2
avatar+26387 
+15

Kyle is pulling a box east with a force of 300 newtons at a constant angle of 42° to the horizontal.
Jerome is pushing the box from behind with a force of 350 newtons due east.
Determine the magnitude and direction of the resultant force on the box.

 

Let m = magnitude
Let D = direction

 

1. trigonometric:
\(\begin{array}{|rcll|} \hline m^2 &=& 300^2+350^2-2\cdot 300 \cdot 350 \cdot \cos(180^{\circ} - 42^{\circ}) \\ m^2 &=& 212500+210000 \cdot \cos(42^{\circ}) \\ m^2 &=& 212500+210000 \cdot \cos(42^{\circ}) \\ m^2 &=& 212500+210000 \cdot 0.74314482548 \\ m^2 &=& 368560.413350 \\ \mathbf{m} & \mathbf{=} & \mathbf{607.091766828\ N } \\\\ \frac{\sin(D)}{300} &=& \frac{\sin(180^{\circ} - 42^{\circ})}{m} \\ \frac{\sin(D)}{300} &=& \frac{\sin(42^{\circ})}{m} \\ \sin(D) &=& \frac{300}{m} \cdot \sin(42^{\circ}) \\ \sin(D) &=& \frac{300}{m} \cdot \sin(42^{\circ}) \\ \sin(D) &=& \frac{300}{607.091766828} \cdot \sin(42^{\circ}) \\ \sin(D) &=& 0.49415922994 \cdot 0.66913060636 \\ \sin(D) &=& 0.33065706517 \\ \mathbf{D} & \mathbf{=} & \mathbf{19.3086615149^{\circ}} \\ \hline \end{array} \)

 

2. vectorial:

\(\begin{array}{|rcll|} \hline \vec{K} &=& \dbinom{350}{0} \\ \vec{J} &=& \dbinom{ 300\cdot \cos(42^{\circ}) } { 300\cdot \sin(42^{\circ}) } \\\\ \vec{K}+\vec{J} &=& \dbinom{350}{0} + \dbinom{ 300\cdot \cos(42^{\circ}) } { 300\cdot \sin(42^{\circ}) } \\ \vec{K}+\vec{J} &=& \dbinom{350+300\cdot \cos(42^{\circ})}{300\cdot \sin(42^{\circ})} \\ \vec{K}+\vec{J} &=& \dbinom{572.943447643}{200.739181908} \\\\ m &=& \sqrt{ 572.943447643^2+200.739181908^2} \\ \mathbf{m} & \mathbf{=} & \mathbf{607.091766828\ N } \\\\ \tan(D) &=& \frac{200.739181908}{572.943447643} \\ \tan(D) &=& 0.35036473972 \\ \mathbf{D} & \mathbf{=} & \mathbf{19.3086615149^{\circ}} \\ \hline \end{array}\)

 

laugh

24.02.2017