Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #5
avatar+26396 
+10

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure.

Can anyone help with this?

x3x21 dx

 

short way:

 

Substitution

u=x21=(x21)12orx=u2+1du=12(x21)122x dx=xx21 dxordx=x21x dux3x21 dx=(u2+1)3ux21x du=(u2+1)3uuu2+1 du=(u2+1)2u2 du=(u2+1)u2 du=(u4+u2) du=u33+u55+c=u3355+u5533+c=u315(5+3u2)+c

 

Back substitution

u=x21x3x21 dx=u315(5+3u2)+c=(x21)315[5+3(x21)2]+c=(x21)3215[5+3(x21)]+c=(x21)3215(5+3x23)+c=(x21)3215(3x2+2)+c

 

 

laugh

03.02.2017
 #4
avatar+26396 
+15

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?

x3x21dx

 

We apply twice substitution

 

We need the following formulae:

cosh2(z)sinh2(z)=1sinh2(z)=cosh2(z)1sinh(z)=cosh2(z)1cosh2(z)sinh2(z)=1cosh2(z)=1+sinh2(z)ddzsinh(z)=cosh(z)ddzcosh(z)=sinh(z)

 

1. Substitution

x=cosh(z)dx=sinh(z) dzx3x21 dx=cosh3(z)cosh2(z)1sinh(z) dz=cosh3(z)sinh(z)sinh(z) dz=cosh3(z)sinh2(z) dz

 

 

2. Substitution

u=sinh(z)du=cosh(z) dzcosh3(z)sinh2(z) dz=cosh2(z)sinh2(z)cosh(z) dz=[1+sinh2(z)]sinh2(z)cosh(z) dz=(1+u2)u2 du=(u2+u4) du=u33+u55+c=u33+u55+c=u3355+u5533+c=u315(5+3u2)+c

 

3. Back substitution

u=sinh(z)=cosh2(z)1=x21x3x21 dx=u315(5+3u2)+c=(x21)315[5+3(x21)2]+c=(x21)3215[5+3(x21)]+c=(x21)3215(5+3x23)+c=(x21)3215(3x2+2)+c

 

 

laugh

03.02.2017
 #1
avatar+26396 
+10

How to find the inverse of a cubic function?

 

 

1.y=2(x3)316Inverse:x=2(y3)316|+16x+16=2(y3)3|:2x+162=(y3)3x2+8=(y3)3|cube root both sides3x2+8=y3|+33x2+8+3=yy=3x2+8+3

 

2.f(x)=3x+1+5Inverse:x=3y+1+5|5x5=3y+1|cube both sides(x5)3=y+1|1(x5)31=yy=(x5)31

 

3.y=12(x1)3+3Inverse:x=12(y1)3+3|3x3=12(y1)3|22(x3)=(y1)32(x3)=(y1)3|cube root both sides32(x3)=y1|+132(x3)+1=yy=32(x3)+1

 

laugh

01.02.2017