cos(2 tan−1(x))
I drew a right angled triangle to help me answer this question. sides 1,x and sqrt(1+x^2)
If
ifx≥0andθ=tan−1xthensinθ= x√1+x2cosθ=1√1+x2cos(tan−1x)=cos(2θ)=cos2θ−sin2θ=11+x2−x21+x2=1−x21+x2
Write cos(2 tan−1(x)) as an algebraic expression in x.
cos( 2⋅tan−1(x)⏟=φ )|tan−1(x)=φ or x=tan(φ)Formula:cos( 2⋅φ)=1−tan2(φ)1+tan2(φ)|tan(φ)=xcos( 2⋅φ)=1−x21+x2cos( 2⋅tan−1(x))=1−x21+x2