wie löse ich
sqrt(x-2016)+sqrt(y-56)=11
x+y=2193
Wir haben:
\(\begin{array}{|lrcrl|} \hline (1) & \sqrt{x-2016}+\sqrt{y-56} &=& 11\\ (2) & x+y &=& 2193\\ \hline \end{array}\)
Auflösung der 2. Gleichung nach x:
\(\begin{array}{|lrcll|} \hline (2) & x+y &=& 2193 \quad & | \quad -y \\ & \mathbf{ x } & \mathbf{=} & \mathbf{2193 - y} \\ \hline \end{array} \)
Auflösung der 1. Gleichung nach y:
\(\begin{array}{|rcll|} \hline \sqrt{x-2016} +\sqrt{y-56}&=& 11 & | \quad -\sqrt{y-56} \\ \sqrt{x-2016} &=& 11 \quad -\sqrt{y-56} & | \quad \text{beide Seiten quadrieren}\\ x-2016 &=& (11 \quad -\sqrt{y-56})^2 \\ x-2016 &=& 11^2 -2\cdot 11 \cdot \sqrt{y-56} +(y-56) & | \quad + 2016\\ x &=& 11^2 -2\cdot 11 \cdot \sqrt{y-56} + y-56+ 2016\\ x &=& 121 -2\cdot 11 \cdot \sqrt{y-56} + y+1960\\ x &=& -2\cdot 11 \cdot \sqrt{y-56} + y+ 1960+121\\ x &=& -2\cdot 11 \cdot \sqrt{y-56} + y+ 2081 & | \quad +2\cdot 11 \cdot \sqrt{y-56}\\ 2\cdot 11 \cdot \sqrt{y-56} + x &=& y+ 2081 d & | \quad - x\\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - x & | \quad x =2193 - y\\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - (2193 - y) \\ 2\cdot 11 \cdot \sqrt{y-56} &=& y+ 2081 - 2193 + y \\ 11 \cdot \sqrt{y-56} &=& y - 56 & | \quad \text{beide Seiten quadrieren}\\ 121 \cdot (y-56) &=& (y-56)^2 \\ 121 \cdot (y-56) &=& y^2- 112y + 3136 \\ 121y - 6776 &=& y^2- 112y + 3136 & | \quad - 121y + 6776\\ 0 &=& y^2- 112y + 3136 - 121y + 6776\\ 0 &=& y^2- 233y + 9912\\ \mathbf{ y^2- 233y + 9912 } & \mathbf{=} & \mathbf{0} \\\\ y_{1,2} &=& \frac{233\pm\sqrt{233^2-4\cdot 9912} } { 2 } \\ y_{1,2} &=& \frac{233\pm\sqrt{14641} } { 2 } \\ y_{1,2} &=& \frac{233\pm 121 } { 2 } \\\\ y_1 &=& \frac{233 + 121 } { 2 } \\ \mathbf{ y_1} &\mathbf{ =}& \mathbf{ 177} \\\\ y_2 &=& \frac{233 - 121 } { 2 } \\ \mathbf{ y_2} &\mathbf{ =}& \mathbf{ 56} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline x_1 & = & 2193 - y_1 \\ x_1 & = & 2193 - 177 \\ \mathbf{ x_1} & \mathbf{ =} & \mathbf{2016} \\\\ x_2 & = & 2193 - y_2 \\ x_2 & = & 2193 - 56 \\ \mathbf{ x_2} & \mathbf{ =} & \mathbf{2137} \\ \hline \end{array}\)