Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26397 
+10

           10
find      ∑ (k+2)*3*2^k
         k=0

 

10k=0(k+2)32k=310k=0(k+2)2k=3S10|We set  S10=10k=0(k+2)2k

 

S10=10k=0(k+2)2k=220+321+422++1129+122102S10=221+322++1029+11210+12211S102S10=220+21+22+23++29+2101221120+21+22+23++29+210=211121+22+23++29+210=2112S102S10=220+211212211(12)S10=220+211212211S10=21112211S10=211(121)S10=21111S10=11211

 

10k=0(k+2)32k=3S10=311211=33211=67584

 

laugh

08.08.2016
 #2
avatar+26397 
+1

Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.

 

f(n)=3[ 12+23+34+45++n(n+1) ]f(n)=3[ 1(1+1)+2(2+1)+3(3+1)+4(4+1)++n(n+1) ]f(n)=3[ (12+1)+(22+2)+(33+3)+(42+4)++(n2+n) ]f(n)=3[ (1+2+3+4++n)+(12+22+33+42++n2) ](1+2+3+4++n)=(1+n)n2(12+22+33+42++n2)=n(n+1)(2n+1)6f(n)=3[ (1+n)n2+n(n+1)(2n+1)6 ]f(n)=3n(n+1)[ 12+(2n+1)6 ]f(n)=3n(n+1)[ 36+(2n+1)6 ]f(n)=3n(n+1)(3+2n+16)f(n)=3n(n+1)(2n+46)f(n)=3n(n+1)2(n+26)f(n)=n(n+1)(n+2)

 

laugh

08.08.2016
 #1
avatar+26397 
+5

The 4-digits numbers are 5352, 5114, 5818,..., have 2 common characteristics. First, they start with the digit 5. Second, exactly 2 digits in each numbers are identical. How many such numbers are there?

 

1.500155.5131109.5262163.5405217.5520271.5597325.5744379.58752.500256.5133110.5265164.5411218.5521272.5598326.5745380.58773.500357.5135111.5266165.5414219.5523273.5600327.5747381.58784.500458.5141112.5272166.5415220.5524274.5605328.5750382.58805.500659.5144113.5275167.5422221.5526275.5606329.5751383.58816.500760.5145114.5277168.5424222.5527276.5611330.5752384.58827.500861.5150115.5282169.5425223.5528277.5615331.5753385.58838.500962.5152116.5285170.5433224.5529278.5616332.5754386.58849.501063.5153117.5288171.5434225.5530279.5622333.5756387.588610.501164.5154118.5292172.5435226.5531280.5625334.5758388.588711.501565.5156119.5295173.5440227.5532281.5626335.5759389.588912.502066.5157120.5299174.5441228.5534282.5633336.5765390.589513.502267.5158121.5300175.5442229.5536283.5635337.5766391.589814.502568.5159122.5303176.5443230.5537284.5636338.5767392.589915.503069.5161123.5305177.5446231.5538285.5644339.5770393.590016.503370.5165124.5311178.5447232.5539286.5645340.5771394.590517.503571.5166125.5313179.5448233.5540287.5646341.5772395.590918.504072.5171126.5315180.5449234.5541288.5650342.5773396.591119.504473.5175127.5322181.5450235.5542289.5651343.5774397.591520.504574.5177128.5323182.5451236.5543290.5652344.5776398.591921.505175.5181129.5325183.5452237.5546291.5653345.5778399.592222.505276.5185130.5330184.5453238.5547292.5654346.5779400.592523.505377.5188131.5331185.5456239.5548293.5657347.5785401.592924.505478.5191132.5332186.5457240.5549294.5658348.5787402.593325.505679.5195133.5334187.5458241.5560295.5659349.5788403.593526.505780.5199134.5336188.5459242.5561296.5660350.5795404.593927.505881.5200135.5337189.5464243.5562297.5661351.5797405.594428.505982.5202136.5338190.5465244.5563298.5662352.5799406.594529.506083.5205137.5339191.5466245.5564299.5663353.5800407.594930.506584.5211138.5343192.5474246.5567300.5664354.5805408.595031.506685.5212139.5344193.5475247.5568301.5667355.5808409.595132.507086.5215140.5345194.5477248.5569302.5668356.5811410.595233.507587.5220141.5350195.5484249.5570303.5669357.5815411.595334.507788.5221142.5351196.5485250.5571304.5675358.5818412.595435.508089.5223143.5352197.5488251.5572305.5676359.5822413.595636.508590.5224144.5354198.5494252.5573306.5677360.5825414.595737.508891.5226145.5356199.5495253.5574307.5685361.5828415.595838.509092.5227146.5357200.5499254.5576308.5686362.5833416.596539.509593.5228147.5358201.5501255.5578309.5688363.5835417.596640.509994.5229148.5359202.5502256.5579310.5695364.5838418.596941.510095.5232149.5363203.5503257.5580311.5696365.5844419.597542.510196.5233150.5365204.5504258.5581312.5699366.5845420.597743.510597.5235151.5366205.5506259.5582313.5700367.5848421.597944.511098.5242152.5373206.5507260.5583314.5705368.5850422.598545.511299.5244153.5375207.5508261.5584315.5707369.5851423.598846.5113100.5245154.5377208.5509262.5586316.5711370.5852424.598947.5114101.5250155.5383209.5510263.5587317.5715371.5853425.599048.5116102.5251156.5385210.5512264.5589318.5717372.5854426.599149.5117103.5253157.5388211.5513265.5590319.5722373.5856427.599250.5118104.5254158.5393212.5514266.5591320.5725374.5857428.599351.5119105.5256159.5395213.5516267.5592321.5727375.5859429.599452.5121106.5257160.5399214.5517268.5593322.5733376.5865430.599653.5122107.5258161.5400215.5518269.5594323.5735377.5866431.599754.5125108.5259162.5404216.5519270.5596324.5737378.5868432.5998

 

There are 432 such numbers

 

laugh

05.08.2016
 #4
avatar+26397 
+15

Note that 1111111=10^6+10^5+10^4+10^3+10^2+10+1

and 909091=10^6-10^5+10^4-10^3+10^2-10+1.

Compute the product of these two integers.

 

without mistakes:

 

geometric series:

an=a1rn1sn=a1(1+rnr1)sum

 

geometric series 1:

106+105+104+103+102+10+1|a1=1r=10sn=a1(1+rnr1)sn=a1(1+rn1r)sn=1(1+10n110)s7=1(1+107110)s7=(1+107110)

 

geometric series 2:

106105+104103+10210+1|a1=1r=10Sn=a1(1+rnr1)Sn=a1(1+rn1r)Sn=1(1+(10)n1(10))S7=1(1+(10)71+10)S7=(11071+10)

 

1111111909091=(106+105+104+103+102+10+1)(106105+104103+10210+1)=s7S7=(1+107110)[(11071+10)]=[(1)2(107)212(10)2]=110141102=101411021=9999999999999999=10101010101010

 

laugh

05.08.2016