Note that 1111111=10^6+10^5+10^4+10^3+10^2+10+1
and 909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
without mistakes:
geometric series:
\(\begin{array}{|rcll|} \hline a_n &=& a_1 \cdot r^{n-1} \\ s_n &=& a_1 \left( \frac{-1+r^n}{r-1} \right) \qquad \text{sum}\\ \hline \end{array}\)
geometric series 1:
\(\begin{array}{|rcll|} \hline && 10^6+10^5+10^4+10^3+10^2+10+1 \qquad | \qquad a_1 = 1 \qquad r = 10 \\\\ s_n &=& a_1 \left( \frac{-1+r^n}{r-1} \right) \\ s_n &=& -a_1 \left( \frac{-1+r^n}{1-r} \right) \\ s_n &=& -1\cdot \left( \frac{-1+10^n}{1-10} \right) \\ s_7 &=& -1\cdot \left( \frac{-1+10^7}{1-10} \right) \\ s_7 &=& -\left( \frac{-1+10^7}{1-10} \right) \\ \hline \end{array}\)
geometric series 2:
\(\begin{array}{|rcll|} \hline && 10^6-10^5+10^4-10^3+10^2-10+1 \qquad | \qquad a_1 = 1 \qquad r = -10 \\\\ S_n &=& a_1 \left( \frac{-1+r^n}{r-1} \right) \\ S_n &=& -a_1 \left( \frac{-1+r^n}{1-r} \right) \\ S_n &=& -1\cdot \left( \frac{-1+(-10)^n}{1-(-10)} \right) \\ S_7 &=& -1\cdot \left( \frac{-1+(-10)^7}{1+10} \right) \\ S_7 &=& -\left( \frac{-1-10^7}{1+10} \right) \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline && 1111111 \cdot 909091 \\ &=& (10^6+10^5+10^4+10^3+10^2+10+1) \cdot (10^6-10^5+10^4-10^3+10^2-10+1) \\ &=& s_7 \cdot S_7 \\ &=& -\left( \frac{-1+10^7}{1-10} \right) \cdot [-\left( \frac{-1-10^7}{1+10} \right)] \\ &=& \left[ \frac{(-1)^2-(10^7)^2}{1^2-(10)^2} \right] \\ &=& \frac{1-10^{14}}{1-10^2} \\ &=& \frac{10^{14}-1}{10^2-1} \\ &=& \frac{99999999999999}{99} \\ &=& 10101010101010 \\ \hline \end{array}\)