Find the remainder when $1^3 + 2^3 + 3^3 + \dots + 100^3$ is divided by 6.
Find the remainder when $1^3 + 2^3 + 3^3 + \dots + 100^3$ is divided by 6.
(1/4 n^2 (n+1)^2) mod 6 = 4
Find the remainder when $1^3 + 2^3 + 3^3 + \dots + 100^3$ is divided by 6.
The sum of 13+23+33+⋯+n3=[n∗(n+1)2]2The sum of 13+23+33+⋯+1003=[100∗(100+1)2]2
13+23+33+⋯+1003(mod6)≡[100∗(100+1)2]2(mod6)≡[100∗1012]2(mod6)≡[50∗101]2(mod6)≡50502(mod6)|5050(mod6)=4≡42(mod6)≡16(mod6)≡4(mod6)