heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
 #1
avatar+26387 
+15

An airplane makes a 990 km flight with a tailwind and returns,
flying into the same wind. The total flying time is 3 hours 20 minutes,
and the airplane’s speed in still air is 600 km/h. What is the speed of the wind?

 

velocity airplane:  \(v_a\)

velocity wind: \(v_w\)

 

time for the journey there: \(t_1\)

time for way back: \(t_2\)

 

distance: d = 990 km

total time: \(t = t_1 + t_2\)           

( t = 3 hours 20 minutes )


\(\begin{array}{|rcll|} \hline d &=& (v_a+v_w)\cdot t_1 \quad \text{ for the journey there} \\ d &=& (v_a-v_w)\cdot t_2 \quad \text{ for way back} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline t_1 &=& \dfrac{d}{v_a+v_w} \\ t_2 &=& \dfrac{d}{v_a-v_w} \\\\ t &=& t_1 + t_2 \\\\ t &=& \dfrac{d}{v_a+v_w} + \dfrac{d}{v_a-v_w} \\\\ t &=& d\cdot \left( \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \right) \\\\ \dfrac{t}{d} &=& \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \\\\ \dfrac{t}{d} &=& \dfrac{v_a-v_w+v_a+v_w}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{v_a^2-v_w^2} \\\\ \dfrac{d}{t} &=& \dfrac{v_a^2-v_w^2}{2v_a} \quad &| \quad \cdot 2v_a\\ 2v_a\cdot \dfrac{d}{t} &=& v_a^2-v_w^2 \quad &| \quad +v_w^2\\ v_w^2 + 2v_a\cdot \dfrac{d}{t} &=& v_a^2 \quad &| \quad -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a^2 -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a\cdot \left( v_a - \dfrac{2d}{t} \right) \quad &|d=990 \quad v_a = 600 \quad t=3\frac{1}{3}=\frac{10}{3}\ \text{hours}\\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990}{\frac{10}{3}} \right) \\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990\cdot 3}{10} \right) \\ v_w^2 &=& 600\cdot \left( 600 - 6\cdot 99 \right) \\ v_w^2 &=& 600\cdot \left( 600 - 594 \right) \\ v_w^2 &=& 600\cdot 6 \\ v_w^2 &=& 3600 \quad &| \quad \sqrt{} \\ v_w & = & \sqrt{3600} \\ \mathbf{v_w} & \mathbf{=} & \mathbf{60} \\ \hline \end{array}\)

 

 

The speed of the wind is \( \mathbf{60 \ \frac{km}{h}}\) .

 

laugh

04.08.2016
 #2
avatar+26387 
+5

4. Given

\(a \equiv 1 \pmod{7}\),

\(b \equiv 2 \pmod{7}\),

and

\(c \equiv 6 \pmod{7}\),

what is the remainder when

\(a^{81} b^{91} c^{27} \)

is divided by 7?

 

\(\begin{array}{|rclcl|} \hline a-1 &=& 7l \quad &\text{or}& \quad a =7l+1 \\ b-2 &=& 7m \quad &\text{or}& \quad b =7m+2 \\ c-6 &=& 7n \quad &\text{or}& \quad c =7n+6 \\ \hline \end{array}\)

 

\(\begin{array}{|rclcl|} \hline && a^{81} b^{91} c^{27} \pmod 7 \\ &\equiv& (7l+1)^{81}\cdot (7m+2)^{91}\cdot (7n+6)^{27} \pmod 7 \\\\ &\equiv& \left[\binom{81}{0}(7l)^{81}+ \binom{81}{1}(7l)^{80} +\dots + \binom{81}{81} 1^{81} \right] \\ && \cdot \left[\binom{91}{0}(7m)^{91}+ \binom{91}{1}(7m)^{90} +\dots + \binom{91}{91} 2^{91} \right] \\ && \cdot \left[\binom{27}{0}(7n)^{27}+ \binom{27}{1}(7n)^{26} +\dots + \binom{27}{27} 6^{27} \right] \pmod 7 \\\\ &\equiv& \binom{81}{81} 1^{81}\cdot \binom{91}{91} 2^{91} \cdot \binom{27}{27} 6^{27}\pmod 7 \\\\ &\equiv& 1^{81}\cdot 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 1 \cdot 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 2^{91} \cdot 6^{27}\pmod 7 \\ \hline \end{array} \)

 

\(\begin{array}{|lllcl|} \hline \text{Because } gcd(2,7) = 1 \quad \Rightarrow & 2^{\varphi(7)} \equiv 1 \pmod 7 \qquad \varphi(7) = 6\\ & \mathbf{2^{6} \equiv 1 \pmod 7} \\\\ \text{Because } gcd(6,7) = 1 \quad \Rightarrow & 6^{\varphi(7)} \equiv 1 \pmod 7 \qquad \varphi(7) = 6\\ & \mathbf{6^{6} \equiv 1 \pmod 7} \\ \hline \end{array} \)

 

\(\begin{array}{|rclcl|} \hline && a^{81} b^{91} c^{27} \pmod 7 \\ &\equiv& 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 2^{6\cdot 15+1} \cdot 6^{6\cdot 4+3}\pmod 7 \\ &\equiv& 2^{6\cdot 15}\cdot 2 \cdot 6^{6\cdot 4}\cdot 6^3 \pmod 7 \\ &\equiv& (2^6)^{15}\cdot 2 \cdot (6^6)^{4}\cdot 6^3\pmod 7 \qquad \mathbf{2^{6} \equiv 1 \pmod 7}\\ &\equiv& (1)^{15}\cdot 2 \cdot (6^6)^{4}\cdot 6^3\pmod 7 \qquad \mathbf{6^{6} \equiv 1 \pmod 7}\\ &\equiv& (1)^{15}\cdot 2 \cdot (1)^{4}\cdot 6^3\pmod 7 \\ &\equiv& 1 \cdot 2 \cdot 1 \cdot 6^3\pmod 7 \\ &\equiv& 2 \cdot 6^3 \pmod 7 \\ &\equiv& 2 \cdot 216 \pmod 7 \\ &\equiv& 432 \pmod 7 \\ &\equiv& \mathbf{5} \pmod 7 \\ \hline \end{array} \)

 

The remainder is 5

 

laugh

02.08.2016