Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+10

Note that

1111111=10^6+10^5+10^4+10^3+10^2+10+1

and

909091=10^6-10^5+10^4-10^3+10^2-10+1.

 

Compute the product of these two integers.

 

geometric series:

an=a1rn1sn=a1(1+rn1r)sum

 

geometric series 1:

106+105+104+103+102+10+1|a1=1r=10sn=a1(1+rn1r)sn=1(1+10n110)s7=1(1+107110)s7=(1+107110)

 

geometric series 2:

106105+104103+10210+1|a1=1r=10Sn=a1(1+rn1r)Sn=1(1+(10)n1(10))S7=1(1+(10)71+10)S7=(11071+10)

 

1111111909091=(106+105+104+103+102+10+1)(106105+104103+10210+1)=s7S7=(1+107110)(11071+10)=[(1)2(107)212(10)2]=110141102=101411021=9999999999999999=10101010101010

 

laugh

05.08.2016
 #1
avatar+26396 
+15

An airplane makes a 990 km flight with a tailwind and returns,
flying into the same wind. The total flying time is 3 hours 20 minutes,
and the airplane’s speed in still air is 600 km/h. What is the speed of the wind?

 

velocity airplane:  va

velocity wind: vw

 

time for the journey there: t1

time for way back: t2

 

distance: d = 990 km

total time: t=t1+t2           

( t = 3 hours 20 minutes )


d=(va+vw)t1 for the journey thered=(vavw)t2 for way back

 

t1=dva+vwt2=dvavwt=t1+t2t=dva+vw+dvavwt=d(1va+vw+1vavw)td=1va+vw+1vavwtd=vavw+va+vw(va+vw)(vavw)td=2va(va+vw)(vavw)td=2vav2av2wdt=v2av2w2va|2va2vadt=v2av2w|+v2wv2w+2vadt=v2a|2vadtv2w=v2a2vadtv2w=va(va2dt)|d=990va=600t=313=103 hoursv2w=600(6002990103)v2w=600(6002990310)v2w=600(600699)v2w=600(600594)v2w=6006v2w=3600|vw=3600vw=60

 

 

The speed of the wind is 60 kmh .

 

laugh

04.08.2016
 #2
avatar+26396 
+5

4. Given

a1(mod7),

b2(mod7),

and

c6(mod7),

what is the remainder when

a81b91c27

is divided by 7?

 

a1=7lora=7l+1b2=7morb=7m+2c6=7norc=7n+6

 

a81b91c27(mod7)(7l+1)81(7m+2)91(7n+6)27(mod7)[(810)(7l)81+(811)(7l)80++(8181)181][(910)(7m)91+(911)(7m)90++(9191)291][(270)(7n)27+(271)(7n)26++(2727)627](mod7)(8181)181(9191)291(2727)627(mod7)181291627(mod7)1291627(mod7)291627(mod7)

 

Because gcd(2,7)=12φ(7)1(mod7)φ(7)=6261(mod7)Because gcd(6,7)=16φ(7)1(mod7)φ(7)=6661(mod7)

 

a81b91c27(mod7)291627(mod7)2615+1664+3(mod7)2615266463(mod7)(26)152(66)463(mod7)261(mod7)(1)152(66)463(mod7)661(mod7)(1)152(1)463(mod7)12163(mod7)263(mod7)2216(mod7)432(mod7)5(mod7)

 

The remainder is 5

 

laugh

02.08.2016