An airplane makes a 990 km flight with a tailwind and returns,
flying into the same wind. The total flying time is 3 hours 20 minutes,
and the airplane’s speed in still air is 600 km/h. What is the speed of the wind?
velocity airplane: va
velocity wind: vw
time for the journey there: t1
time for way back: t2
distance: d = 990 km
total time: t=t1+t2
( t = 3 hours 20 minutes )
d=(va+vw)⋅t1 for the journey thered=(va−vw)⋅t2 for way back
t1=dva+vwt2=dva−vwt=t1+t2t=dva+vw+dva−vwt=d⋅(1va+vw+1va−vw)td=1va+vw+1va−vwtd=va−vw+va+vw(va+vw)⋅(va−vw)td=2va(va+vw)⋅(va−vw)td=2vav2a−v2wdt=v2a−v2w2va|⋅2va2va⋅dt=v2a−v2w|+v2wv2w+2va⋅dt=v2a|−2va⋅dtv2w=v2a−2va⋅dtv2w=va⋅(va−2dt)|d=990va=600t=313=103 hoursv2w=600⋅(600−2⋅990103)v2w=600⋅(600−2⋅990⋅310)v2w=600⋅(600−6⋅99)v2w=600⋅(600−594)v2w=600⋅6v2w=3600|√vw=√3600vw=60
The speed of the wind is 60 kmh .
