Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.
Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.
f(n)=n⋅(n+1)⋅(n+2)
Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.
f(n)=3⋅[ 1⋅2+2⋅3+3⋅4+4⋅5+⋯+n(n+1) ]f(n)=3⋅[ 1⋅(1+1)+2⋅(2+1)+3⋅(3+1)+4⋅(4+1)+⋯+n(n+1) ]f(n)=3⋅[ (12+1)+(22+2)+(33+3)+(42+4)+⋯+(n2+n) ]f(n)=3⋅[ (1+2+3+4+⋯+n)+(12+22+33+42+⋯+n2) ](1+2+3+4+⋯+n)=(1+n)⋅n2(12+22+33+42+⋯+n2)=n⋅(n+1)⋅(2n+1)6f(n)=3⋅[ (1+n)⋅n2+n⋅(n+1)⋅(2n+1)6 ]f(n)=3⋅n⋅(n+1)⋅[ 12+(2n+1)6 ]f(n)=3⋅n⋅(n+1)⋅[ 36+(2n+1)6 ]f(n)=3⋅n⋅(n+1)⋅(3+2n+16)f(n)=3⋅n⋅(n+1)⋅(2n+46)f(n)=3⋅n⋅(n+1)⋅2⋅(n+26)f(n)=n⋅(n+1)⋅(n+2)