Processing math: 100%
 
+0  
 
0
4178
2
avatar

Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.

 Aug 7, 2016
 #1
avatar+26398 
+5

Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.

 

f(n)=n(n+1)(n+2)

 

laugh

 Aug 8, 2016
 #2
avatar+26398 
+1

Find polynomial f(n) such that for all integers n>=1, we have 3(1*2+2*3+...+n(n+1))=f(n). Write f(n) as a polynomial with terms in descending order or n.

 

f(n)=3[ 12+23+34+45++n(n+1) ]f(n)=3[ 1(1+1)+2(2+1)+3(3+1)+4(4+1)++n(n+1) ]f(n)=3[ (12+1)+(22+2)+(33+3)+(42+4)++(n2+n) ]f(n)=3[ (1+2+3+4++n)+(12+22+33+42++n2) ](1+2+3+4++n)=(1+n)n2(12+22+33+42++n2)=n(n+1)(2n+1)6f(n)=3[ (1+n)n2+n(n+1)(2n+1)6 ]f(n)=3n(n+1)[ 12+(2n+1)6 ]f(n)=3n(n+1)[ 36+(2n+1)6 ]f(n)=3n(n+1)(3+2n+16)f(n)=3n(n+1)(2n+46)f(n)=3n(n+1)2(n+26)f(n)=n(n+1)(n+2)

 

laugh

heureka  Aug 8, 2016

4 Online Users

avatar