Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3814
4
avatar+1836 

Note that

1111111=10^6+10^5+10^4+10^3+10^2+10+1

and

909091=10^6-10^5+10^4-10^3+10^2-10+1.

 

Compute the product of these two integers.

 Aug 5, 2016

Best Answer 

 #2
avatar+118703 
+15

1111111=10^6+10^5+10^4+10^3+10^2+10+1

and

909091=10^6-10^5+10^4-10^3+10^2-10+1.

 

Compute the product of these two integers.

 

This is one way - I did it as the difference of 2 squares.

Heureka is doing it now as well, he probably has a better way...

 

 

(106+105+104+103+102+10+1)×(106105+104103+10210+1)=(106+104+102+1+105+103+10)×(106+104+102+110510310)=[(106+104+102+1)+(105+103+10)]×[(106+104+102+1)(105+103+10)]=[(106+104+102+1)2(105+103+10)2]=[(106(106+104+102+1)+104(106+104+102+1)+102(106+104+102+1)+(106+104+102+1)](105+103+10)2]=[1012+21010+3108+4106+3104+2102+1][(105(105+103+10)+103(105+103+10)+10(105+103+10)]=[1012+21010+3108+4106+3104+2102+1][1010+2108+3106+2104+102]=[1012+1010+108+106+104+102+1]=1010101010101

 Aug 5, 2016
 #1
avatar
0

1111111*909091=1,010,101,010,101= 239 * 4649 * 909091

 Aug 5, 2016
 #2
avatar+118703 
+15
Best Answer

1111111=10^6+10^5+10^4+10^3+10^2+10+1

and

909091=10^6-10^5+10^4-10^3+10^2-10+1.

 

Compute the product of these two integers.

 

This is one way - I did it as the difference of 2 squares.

Heureka is doing it now as well, he probably has a better way...

 

 

(106+105+104+103+102+10+1)×(106105+104103+10210+1)=(106+104+102+1+105+103+10)×(106+104+102+110510310)=[(106+104+102+1)+(105+103+10)]×[(106+104+102+1)(105+103+10)]=[(106+104+102+1)2(105+103+10)2]=[(106(106+104+102+1)+104(106+104+102+1)+102(106+104+102+1)+(106+104+102+1)](105+103+10)2]=[1012+21010+3108+4106+3104+2102+1][(105(105+103+10)+103(105+103+10)+10(105+103+10)]=[1012+21010+3108+4106+3104+2102+1][1010+2108+3106+2104+102]=[1012+1010+108+106+104+102+1]=1010101010101

Melody Aug 5, 2016
 #3
avatar+26396 
+10

Note that

1111111=10^6+10^5+10^4+10^3+10^2+10+1

and

909091=10^6-10^5+10^4-10^3+10^2-10+1.

 

Compute the product of these two integers.

 

geometric series:

an=a1rn1sn=a1(1+rn1r)sum

 

geometric series 1:

106+105+104+103+102+10+1|a1=1r=10sn=a1(1+rn1r)sn=1(1+10n110)s7=1(1+107110)s7=(1+107110)

 

geometric series 2:

106105+104103+10210+1|a1=1r=10Sn=a1(1+rn1r)Sn=1(1+(10)n1(10))S7=1(1+(10)71+10)S7=(11071+10)

 

1111111909091=(106+105+104+103+102+10+1)(106105+104103+10210+1)=s7S7=(1+107110)(11071+10)=[(1)2(107)212(10)2]=110141102=101411021=9999999999999999=10101010101010

 

laugh

 Aug 5, 2016
 #4
avatar+26396 
+15

Note that 1111111=10^6+10^5+10^4+10^3+10^2+10+1

and 909091=10^6-10^5+10^4-10^3+10^2-10+1.

Compute the product of these two integers.

 

without mistakes:

 

geometric series:

an=a1rn1sn=a1(1+rnr1)sum

 

geometric series 1:

106+105+104+103+102+10+1|a1=1r=10sn=a1(1+rnr1)sn=a1(1+rn1r)sn=1(1+10n110)s7=1(1+107110)s7=(1+107110)

 

geometric series 2:

106105+104103+10210+1|a1=1r=10Sn=a1(1+rnr1)Sn=a1(1+rn1r)Sn=1(1+(10)n1(10))S7=1(1+(10)71+10)S7=(11071+10)

 

1111111909091=(106+105+104+103+102+10+1)(106105+104103+10210+1)=s7S7=(1+107110)[(11071+10)]=[(1)2(107)212(10)2]=110141102=101411021=9999999999999999=10101010101010

 

laugh

heureka  Aug 5, 2016

0 Online Users