Note that
1111111=10^6+10^5+10^4+10^3+10^2+10+1
and
909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
1111111=10^6+10^5+10^4+10^3+10^2+10+1
and
909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
This is one way - I did it as the difference of 2 squares.
Heureka is doing it now as well, he probably has a better way...
(106+105+104+103+102+10+1)×(106−105+104−103+102−10+1)=(106+104+102+1+105+103+10)×(106+104+102+1−105−103−10)=[(106+104+102+1)+(105+103+10)]×[(106+104+102+1)−(105+103+10)]=[(106+104+102+1)2−(105+103+10)2]=[(106(106+104+102+1)+104(106+104+102+1)+102(106+104+102+1)+(106+104+102+1)]−(105+103+10)2]=[1012+2∗1010+3∗108+4∗106+3∗104+2∗102+1]−[(105(105+103+10)+103(105+103+10)+10(105+103+10)]=[1012+2∗1010+3∗108+4∗106+3∗104+2∗102+1]−[1010+2∗108+3∗106+2∗104+102]=[1012+1010+108+106+104+102+1]=1010101010101
1111111=10^6+10^5+10^4+10^3+10^2+10+1
and
909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
This is one way - I did it as the difference of 2 squares.
Heureka is doing it now as well, he probably has a better way...
(106+105+104+103+102+10+1)×(106−105+104−103+102−10+1)=(106+104+102+1+105+103+10)×(106+104+102+1−105−103−10)=[(106+104+102+1)+(105+103+10)]×[(106+104+102+1)−(105+103+10)]=[(106+104+102+1)2−(105+103+10)2]=[(106(106+104+102+1)+104(106+104+102+1)+102(106+104+102+1)+(106+104+102+1)]−(105+103+10)2]=[1012+2∗1010+3∗108+4∗106+3∗104+2∗102+1]−[(105(105+103+10)+103(105+103+10)+10(105+103+10)]=[1012+2∗1010+3∗108+4∗106+3∗104+2∗102+1]−[1010+2∗108+3∗106+2∗104+102]=[1012+1010+108+106+104+102+1]=1010101010101
Note that
1111111=10^6+10^5+10^4+10^3+10^2+10+1
and
909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
geometric series:
an=a1⋅rn−1sn=a1(−1+rn1−r)sum
geometric series 1:
106+105+104+103+102+10+1|a1=1r=10sn=a1(−1+rn1−r)sn=1⋅(−1+10n1−10)s7=1⋅(−1+1071−10)s7=(−1+1071−10)
geometric series 2:
106−105+104−103+102−10+1|a1=1r=−10Sn=a1(−1+rn1−r)Sn=1⋅(−1+(−10)n1−(−10))S7=1⋅(−1+(−10)71+10)S7=(−1−1071+10)
1111111⋅909091=(106+105+104+103+102+10+1)⋅(106−105+104−103+102−10+1)=s7⋅S7=(−1+1071−10)⋅(−1−1071+10)=[(−1)2−(107)212−(10)2]=1−10141−102=1014−1102−1=9999999999999999=10101010101010
Note that 1111111=10^6+10^5+10^4+10^3+10^2+10+1
and 909091=10^6-10^5+10^4-10^3+10^2-10+1.
Compute the product of these two integers.
without mistakes:
geometric series:
an=a1⋅rn−1sn=a1(−1+rnr−1)sum
geometric series 1:
106+105+104+103+102+10+1|a1=1r=10sn=a1(−1+rnr−1)sn=−a1(−1+rn1−r)sn=−1⋅(−1+10n1−10)s7=−1⋅(−1+1071−10)s7=−(−1+1071−10)
geometric series 2:
106−105+104−103+102−10+1|a1=1r=−10Sn=a1(−1+rnr−1)Sn=−a1(−1+rn1−r)Sn=−1⋅(−1+(−10)n1−(−10))S7=−1⋅(−1+(−10)71+10)S7=−(−1−1071+10)
1111111⋅909091=(106+105+104+103+102+10+1)⋅(106−105+104−103+102−10+1)=s7⋅S7=−(−1+1071−10)⋅[−(−1−1071+10)]=[(−1)2−(107)212−(10)2]=1−10141−102=1014−1102−1=9999999999999999=10101010101010