If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5
4x53x+1=102x+122x53x+1=52x+1∗22x+122x÷22x+1=52x+1÷53x+122x−(2x+1)=52x+1−(3x+1)2−1=5−xlog(2−1)=log(5−x)−log(2)=−xlog(5)log(2)log(5)=xx=log(2)log(5)
If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5
4x⋅53x+1=102x+1|log10log10(4x⋅53x+1)=log10(102x+1)|log10(102x+1)=2x+1log10(4x⋅53x+1)=2x+1|log10(a⋅b)=log10(a)+log10(b)log10(4x)+log10(53x+1)=2x+1|log10(ab)=b⋅log10(a)x⋅log10(4)+(3x+1)⋅log10(5)=2x+1x⋅log10(4)+3x⋅log10(5)+log10(5)=2x+1|−2xx⋅log10(4)+3x⋅log10(5)−2x+log10(5)=1|−log10(5)x⋅log10(4)+3x⋅log10(5)−2x=1−log10(5)x⋅[log10(4)+3⋅log10(5)−2]=1−log10(5)|1=log10(10)x⋅[log10(4)+3⋅log10(5)−2]=log10(10)−log10(5)|log10(a)−log10(b)=log10(ab)x⋅[log10(4)+3⋅log10(5)−2]=log10(105)x⋅[log10(4)+3⋅log10(5)−2]=log10(2)|2=log10(102)x⋅[log10(4)+3⋅log10(5)−log10(102)]=log10(2)|b⋅log10(a)=log10(ab)x⋅[log10(4)+log10(53)−log10(102)]=log10(2)x⋅[log10(4⋅53102)]=log10(2)x⋅[log10(500100)]=log10(2)x⋅[log10(5)]=log10(2)|:log10(5)x=log10(2)log10(5)