Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
774
2
avatar

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 Apr 27, 2016

Best Answer 

 #1
avatar+118703 
+10

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 

4x53x+1=102x+122x53x+1=52x+122x+122x÷22x+1=52x+1÷53x+122x(2x+1)=52x+1(3x+1)21=5xlog(21)=log(5x)log(2)=xlog(5)log(2)log(5)=xx=log(2)log(5)

 Apr 27, 2016
 #1
avatar+118703 
+10
Best Answer

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 

4x53x+1=102x+122x53x+1=52x+122x+122x÷22x+1=52x+1÷53x+122x(2x+1)=52x+1(3x+1)21=5xlog(21)=log(5x)log(2)=xlog(5)log(2)log(5)=xx=log(2)log(5)

Melody Apr 27, 2016
 #2
avatar+26396 
+10

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 

 

4x53x+1=102x+1|log10log10(4x53x+1)=log10(102x+1)|log10(102x+1)=2x+1log10(4x53x+1)=2x+1|log10(ab)=log10(a)+log10(b)log10(4x)+log10(53x+1)=2x+1|log10(ab)=blog10(a)xlog10(4)+(3x+1)log10(5)=2x+1xlog10(4)+3xlog10(5)+log10(5)=2x+1|2xxlog10(4)+3xlog10(5)2x+log10(5)=1|log10(5)xlog10(4)+3xlog10(5)2x=1log10(5)x[log10(4)+3log10(5)2]=1log10(5)|1=log10(10)x[log10(4)+3log10(5)2]=log10(10)log10(5)|log10(a)log10(b)=log10(ab)x[log10(4)+3log10(5)2]=log10(105)x[log10(4)+3log10(5)2]=log10(2)|2=log10(102)x[log10(4)+3log10(5)log10(102)]=log10(2)|blog10(a)=log10(ab)x[log10(4)+log10(53)log10(102)]=log10(2)x[log10(453102)]=log10(2)x[log10(500100)]=log10(2)x[log10(5)]=log10(2)|:log10(5)x=log10(2)log10(5)

 Apr 27, 2016
edited by heureka  Apr 27, 2016

0 Online Users