Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
5022
3
avatar+1314 

How many ways are there to walk from A to B by only moving rightward or upward?

 Apr 26, 2016

Best Answer 

 #2
avatar+817 
+3

haha used the same site when trying to figure this out myself!

 Apr 26, 2016
 #1
avatar+130466 
+9

I believe I remember how to do this, but.......someone will have to check me on it !!!.....

 

In any   m x n    grid, there are   C ( m + n , m) paths to the right and upward, assuming that we start at the lower left vertex of the grid and end up at the top right vertex....  or, alternatively,  C ( m + n, n)  paths......these should work out the same

 

So.....the first grid is a 2 x 3 grid, which means there are C ( 2 + 3, 2)   = C ( 5, 2)  = 10 paths from the lower left starting point and moving to the right and up to the intersection of the two grids .......this would be the same as C ( 2 + 3, 3)  = C (5, 3)  = 10

 

The next grid is a  4 x 3 grid.....which implies that there are  C(4 + 3 , 3)  = C(7, 3)   = 35 paths which we can take [ moving in the specified manner ] from the intersection of the two grids to the top right vertex of the upper grid

 

So....the total paths become  C(5,2) * C (7,3)   =  10 * 35   = 350 distinct paths moving to the right and upward from the lower left vertex of the bottom grid to the upper left vertex of the top grid.

 

Here's a good website that presents the logic behind this........http://betterexplained.com/articles/navigate-a-grid-using-combinations-and-permutations/

 

 

cool cool cool

 Apr 26, 2016
 #2
avatar+817 
+3
Best Answer

haha used the same site when trying to figure this out myself!

Landry  Apr 26, 2016
 #3
avatar+26396 
+6

 

nodes:27282930B(31)2223242526171819202110111213141516789456A(1)23

 

 entrys 1= one way 0=no way from node x to node y

 

 

 

Matrix A =

 

Marix A*A =

...

 

Matrix  A12=AAAAAAAAAAAA=

 

A12: Matrix element[A][B] =350 (12-station-way)

 

laugh

 Apr 27, 2016
edited by heureka  Apr 27, 2016
edited by heureka  Apr 27, 2016
edited by heureka  Apr 27, 2016

0 Online Users