The distance s, in meters, of an object from the origin at time t=0
seconds is given bys=s(t)=A⋅cos(ωt+ϕ), where A, ω, and ϕ are constant.
s(t)=A⋅cos(ωt+ϕ)(distance)(a) Find the velocity v of the object at time t. v(t)=dsdt=−A⋅ω⋅sin(ωt+ϕ)(velocity)(c) Find the acceleration a of the object at time t.a(t)=d2sdt2=−A⋅ω2⋅cos(ωt+ϕ)(acceleration)
(b) When is the velocity of the object 0?v(t)=−A⋅ω⋅sin(ωt+ϕ)=0sin(ωt+ϕ)=0ωt+ϕ=arcsin(0)±k⋅πωt+ϕ=0±k⋅πωt=−ϕ±k⋅πt=−ϕ±k⋅πωk=0,1,2,…
(d) When is the acceleration of the object 0?a(t)=−A⋅ω2⋅cos(ωt+ϕ)=0cos(ωt+ϕ)=0ωt+ϕ=arccos(0)±k⋅πωt+ϕ=π2±k⋅πωt=π2−ϕ±k⋅πt=π2−ϕ±k⋅πωk=0,1,2,…
