law of cosine
a=6 b=9 c=10 find the angles
a2=b2+c2−2bc⋅cos(A)2bc⋅cos(A)=b2+c2−a2cos(A)=b2+c2−a22bccos(A)=92+102−622⋅9⋅10cos(A)=81+100−36180cos(A)=145180cos(A)=0.80555555556A=arccos(0.80555555556)A=36.3360575146∘b2=c2+a2−2ca⋅cos(B)2ca⋅cos(B)=c2+a2−b2cos(B)=c2+a2−b22cacos(B)=102+62−922⋅10⋅6cos(B)=100+36−81120cos(B)=55120cos(B)=0.45833333333B=arccos(0.45833333333)B=62.7203872640∘c2=a2+b2−2ab⋅cos(C)2ab⋅cos(C)=a2+b2−c2cos(C)=a2+b2−c22abcos(C)=62+92−1022⋅6⋅9cos(C)=36+81−100108cos(C)=17108cos(C)=0.15740740741C=arccos(0.15740740741)C=80.9435552214∘
Which is oppistie which is adjacent and which is the hyptounuse
Mark them like this O for oppisite A for adjacent and H for hypotonuse.
law of cosine
a=6 b=9 c=10 find the angles
a2=b2+c2−2bc⋅cos(A)2bc⋅cos(A)=b2+c2−a2cos(A)=b2+c2−a22bccos(A)=92+102−622⋅9⋅10cos(A)=81+100−36180cos(A)=145180cos(A)=0.80555555556A=arccos(0.80555555556)A=36.3360575146∘b2=c2+a2−2ca⋅cos(B)2ca⋅cos(B)=c2+a2−b2cos(B)=c2+a2−b22cacos(B)=102+62−922⋅10⋅6cos(B)=100+36−81120cos(B)=55120cos(B)=0.45833333333B=arccos(0.45833333333)B=62.7203872640∘c2=a2+b2−2ab⋅cos(C)2ab⋅cos(C)=a2+b2−c2cos(C)=a2+b2−c22abcos(C)=62+92−1022⋅6⋅9cos(C)=36+81−100108cos(C)=17108cos(C)=0.15740740741C=arccos(0.15740740741)C=80.9435552214∘