Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
623
1
avatar

The distance ss, in meters, of an object from the origin at time t≥0t≥0 seconds is given by s=s(t)=Acos(ωt+ϕs=s(t)=Acos⁡(ωt+ϕ), where A,A, ω,ω, and ϕϕ are constant.

(a) Find the velocity vv of the object at time tt.

(b) When is the velocity of the object 00?

(c) Find the acceleration aa of the object at time t.t.

(d) When is the acceleration of the object 0?

 Feb 21, 2016

Best Answer 

 #1
avatar+26397 
+30

The distance s, in meters, of an object from the origin at time t=0
seconds is given bys=s(t)=Acos(ωt+ϕ), where A, ω, and ϕ are constant.

 

s(t)=Acos(ωt+ϕ)(distance)(a) Find the velocity v of the object at time t. v(t)=dsdt=Aωsin(ωt+ϕ)(velocity)(c) Find the acceleration a of the object at time t.a(t)=d2sdt2=Aω2cos(ωt+ϕ)(acceleration)

 

(b) When is the velocity of the object 0?v(t)=Aωsin(ωt+ϕ)=0sin(ωt+ϕ)=0ωt+ϕ=arcsin(0)±kπωt+ϕ=0±kπωt=ϕ±kπt=ϕ±kπωk=0,1,2,

 

(d) When is the acceleration of the object 0?a(t)=Aω2cos(ωt+ϕ)=0cos(ωt+ϕ)=0ωt+ϕ=arccos(0)±kπωt+ϕ=π2±kπωt=π2ϕ±kπt=π2ϕ±kπωk=0,1,2,

 

laugh

 Feb 22, 2016
 #1
avatar+26397 
+30
Best Answer

The distance s, in meters, of an object from the origin at time t=0
seconds is given bys=s(t)=Acos(ωt+ϕ), where A, ω, and ϕ are constant.

 

s(t)=Acos(ωt+ϕ)(distance)(a) Find the velocity v of the object at time t. v(t)=dsdt=Aωsin(ωt+ϕ)(velocity)(c) Find the acceleration a of the object at time t.a(t)=d2sdt2=Aω2cos(ωt+ϕ)(acceleration)

 

(b) When is the velocity of the object 0?v(t)=Aωsin(ωt+ϕ)=0sin(ωt+ϕ)=0ωt+ϕ=arcsin(0)±kπωt+ϕ=0±kπωt=ϕ±kπt=ϕ±kπωk=0,1,2,

 

(d) When is the acceleration of the object 0?a(t)=Aω2cos(ωt+ϕ)=0cos(ωt+ϕ)=0ωt+ϕ=arccos(0)±kπωt+ϕ=π2±kπωt=π2ϕ±kπt=π2ϕ±kπωk=0,1,2,

 

laugh

heureka Feb 22, 2016

5 Online Users

avatar
avatar