The distance ss, in meters, of an object from the origin at time t≥0t≥0 seconds is given by s=s(t)=Acos(ωt+ϕs=s(t)=Acos(ωt+ϕ), where A,A, ω,ω, and ϕϕ are constant.
(a) Find the velocity vv of the object at time tt.
(b) When is the velocity of the object 00?
(c) Find the acceleration aa of the object at time t.t.
(d) When is the acceleration of the object 0?
The distance s, in meters, of an object from the origin at time t=0
seconds is given bys=s(t)=A⋅cos(ωt+ϕ), where A, ω, and ϕ are constant.
s(t)=A⋅cos(ωt+ϕ)(distance)(a) Find the velocity v of the object at time t. v(t)=dsdt=−A⋅ω⋅sin(ωt+ϕ)(velocity)(c) Find the acceleration a of the object at time t.a(t)=d2sdt2=−A⋅ω2⋅cos(ωt+ϕ)(acceleration)
(b) When is the velocity of the object 0?v(t)=−A⋅ω⋅sin(ωt+ϕ)=0sin(ωt+ϕ)=0ωt+ϕ=arcsin(0)±k⋅πωt+ϕ=0±k⋅πωt=−ϕ±k⋅πt=−ϕ±k⋅πωk=0,1,2,…
(d) When is the acceleration of the object 0?a(t)=−A⋅ω2⋅cos(ωt+ϕ)=0cos(ωt+ϕ)=0ωt+ϕ=arccos(0)±k⋅πωt+ϕ=π2±k⋅πωt=π2−ϕ±k⋅πt=π2−ϕ±k⋅πωk=0,1,2,…
The distance s, in meters, of an object from the origin at time t=0
seconds is given bys=s(t)=A⋅cos(ωt+ϕ), where A, ω, and ϕ are constant.
s(t)=A⋅cos(ωt+ϕ)(distance)(a) Find the velocity v of the object at time t. v(t)=dsdt=−A⋅ω⋅sin(ωt+ϕ)(velocity)(c) Find the acceleration a of the object at time t.a(t)=d2sdt2=−A⋅ω2⋅cos(ωt+ϕ)(acceleration)
(b) When is the velocity of the object 0?v(t)=−A⋅ω⋅sin(ωt+ϕ)=0sin(ωt+ϕ)=0ωt+ϕ=arcsin(0)±k⋅πωt+ϕ=0±k⋅πωt=−ϕ±k⋅πt=−ϕ±k⋅πωk=0,1,2,…
(d) When is the acceleration of the object 0?a(t)=−A⋅ω2⋅cos(ωt+ϕ)=0cos(ωt+ϕ)=0ωt+ϕ=arccos(0)±k⋅πωt+ϕ=π2±k⋅πωt=π2−ϕ±k⋅πt=π2−ϕ±k⋅πωk=0,1,2,…