heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #8
avatar+26387 
+45

A square graphed on the coordinate plane has a diagonal with endpoints E(2,3) and F(0,-3). What are the coords of the endpoints of the other diagonal?

 

1. Diagonal: \(E (x_E=2,y_E=3)\) and \(F(x_F=0,y_F=-3)\).  

What are the coords of the endpoints of the other diagonal \(G(x_G,y_G)\) and \(H(x_H,y_H)\).

 

\(\begin{array}{rcll} \binom{x_G}{y_G} &=& \binom{x_F}{y_F} +\frac12 \cdot \binom{x_E-x_F}{y_E-y_F} + \frac12 \cdot \binom{-(y_E-y_F)}{x_E-x_F} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\frac12 \cdot \binom{2-0}{3-(-3)} + \frac12 \cdot \binom{-(3-(-3))}{2-0} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\frac12 \cdot \binom{2}{6} + \frac12 \cdot \binom{-6}{2} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\binom{\frac12\cdot 2}{\frac12\cdot 6} + \binom{\frac12\cdot (-6)}{\frac12\cdot 2} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\binom{1}{3} + \binom{-3}{1} \\ \binom{x_G}{y_G} &=& \binom{0+1-3}{-3+3+1} \\ \binom{x_G}{y_G} &=& \binom{-2}{1} \\ \end{array}\)

 

\(\begin{array}{rcll} \binom{x_H}{y_H} &=& \binom{x_F}{y_F} +\frac12 \cdot \binom{x_E-x_F}{y_E-y_F} - \frac12 \cdot \binom{-(y_E-y_F)}{x_E-x_F} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\frac12 \cdot \binom{2-0}{3-(-3)} - \frac12 \cdot \binom{-(3-(-3))}{2-0} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\frac12 \cdot \binom{2}{6} - \frac12 \cdot \binom{-6}{2} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\binom{\frac12\cdot 2}{\frac12\cdot 6} - \binom{\frac12\cdot (-6)}{\frac12\cdot 2} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\binom{1}{3} - \binom{-3}{1} \\ \binom{x_H}{y_H} &=& \binom{0+1-(-3)}{-3+3-1} \\ \binom{x_H}{y_H} &=& \binom{0+1+3}{-3+3-1} \\ \binom{x_H}{y_H} &=& \binom{4}{-1} \\ \end{array}\)

 

laugh

05.02.2016
 #2
avatar+26387 
+35

Imagine you have a large supply of 3kg and 8kg weights. Two 3kg weights and three 8kg weights have a mean of 6kg, because (3+3+8+8+8)/5=6 Can you find other combinations of 3kg and 8kg weights whose mean weight is is whole number of kg? What's the smallest? Whats the largest? Can you make all the whole numbers inbetween?

 

Part 2:

 

\(\text{proof}:\\ \begin{array}{rcll} \text{mean } &=& \frac{ u\cdot n \times 3\ kg + v\cdot n \times 8\ kg } { u\cdot n + v\cdot n } \\ &=& \frac{ n\cdot ( u \times 3\ kg + v \times 8\ kg ) } { n\cdot ( u + v ) } \\ &=& \frac{ u \times 3\ kg + v \times 8\ kg } { u + v } \qquad & | \qquad 3\ kg = 8\ kg - 5\ kg \\ &=& \frac{u \times (8\ kg - 5\ kg) + v \times 8\ kg }{ u + v } \\ &=& \frac{u \times (8 - 5 ) + v \times 8} { u + v} \\ &=& \frac{ 8u - 5u + 8v }{ u + v} \\ &=& \frac{ 8(u+v) - 5u}{ u + v} \\ &=& \frac{ 8(u+v) }{ u + v} - \frac{ 5u }{ u + v} \\ &=& 8 - \frac{ 5u }{ u + v} \\ \end{array}\)

 

mean is a whole number, if \(\frac{ 5u }{ u + v}\) is a whole number.

The divisors of 5 is 5 and 1.

So \(\frac{ 5u }{ u + v}\) is a whole number, if \(u+v= 1\) or \(u+v = 5\)

 

1.)  u+v= 1

\(\begin{array}{|rcrcc|ccc|} \hline u && v && u+v & 8 - \frac{ 5u }{ u + v}&& mean \\ \hline 1 &+& 0 & = & 1 & 8 - \frac{ 5\cdot 1 }{ 1 + 0} &=& 3 \\ 0 &+& 1 & = & 1 & 8 - \frac{ 5\cdot 0 }{ 0 + 1} &=& 8 \\ \hline \end{array}\)

 

2.)  u+v= 5

\(\begin{array}{|rcrcc|ccc|} \hline u && v && u+v & 8 - \frac{ 5u }{ u + v}&& mean \\ \hline 1 &+& 4 & = & 5 & 8 - \frac{ 5\cdot 1 }{ 1 + 4} &=& 7 \\ 2 &+& 3 & = & 5 & 8 - \frac{ 5\cdot 2 }{ 2 + 3} &=& 6 \\ 3 &+& 2 & = & 5 & 8 - \frac{ 5\cdot 3 }{ 3 + 2} &=& 5 \\ 4 &+& 1 & = & 5 & 8 - \frac{ 5\cdot 4 }{ 4 + 1} &=& 4 \\ \hline \end{array}\)

 

laugh

05.02.2016