x^2+x/7-2/7 = 0
Add 2/7 to both sides:
x^2+x/7 = 2/7
Add 1/196 to both sides:
x^2+x/7+1/196 = 57/196
Write the left hand side as a square:
(x+1/14)^2 = 57/196
Take the square root of both sides:
x+1/14 = sqrt(57)/14 or x+1/14 = -sqrt(57)/14
Subtract 1/14 from both sides:
x = sqrt(57)/14-1/14 or x+1/14 = -sqrt(57)/14
Subtract 1/14 from both sides:
Answer: |x = sqrt(57)/14-1/14 or x = -1/14-sqrt(57)/14
(3x+2)/x=x/(-2x+1)
3x+2x=x−2x+13x+2x=x1−2x3+2x=11−2xx3+2x=11x−2|⋅1x−2(1x−2)⋅(3+2x)=1(1x−2)⋅(3+2x)=1(1x−2)⋅(3+2⋅1x)=1
We substitute: u=1x
(u−2)⋅(3+2⋅u)=13u+2u2−6−4u=12u2−u−7=0
ax2+bx+c=0x=−b±√b2−4ac2a
2u2−u−7=0a=2b=−1c=−7u1,2=−(−1)±√(−1)2−4⋅2⋅(−7)2⋅2u1,2=1±√1+564u1,2=1±√574u1=1+√574x1=1u1x1=41+√57u2=1−√574x2=1u2x2=41−√57