Siehe Bundeswettbewerb für Mathematik 2016
https://www.mathe-wettbewerbe.de/bwm/aufgaben
Die Antworten sind dann kurz nach dem Einsendeschluss 1. März 2016 auf der homepage des Bundeswettbewerbs Mathematik zu finden.
Die Lösung solltest du schon selber finden.
I am less than 500. All three digits are odd. All three digits are different. The sum of the digits is thirteen. The product of my digits is greater than 30. I am not divisible by 5. Who am I?
(1)x+y+z=13z=13−(x+y)(2)x⋅100+y⋅10+z<500x⋅100+y⋅10+13−(x+y)<50099x+9y+13<5009y<−99x+500−139y<−99x+487 y < −11x+4879 (3)x⋅y⋅z>30x⋅y>30z x⋅y > 3013−(x+y)
I have put y < −11x+4879 and x⋅y > 3013−(x+y) in https://www.desmos.com/calculator
se we have a result of 5 Points. see:
Now let us see:
xyz=13−(x+y)result1513−(1+5)=7yes1713−(1+7)=5no, because 175 is divisible by 53313−(3+3)=7no, because x=y3513−(3+5)=5no, because y=z3713−(3+7)=3no, because x=z
There is only one number 157
To: heureka and others..........
If you calculate the value of yk+1 in (1) and feed it into (2) and repeat the iterations at least 2-3 times, what does the result converge to and what is the rate of convegence, i.e., is it: quadratic, cubic, quartic.....etc. Also, what is the source of this algorithm? Thanks and have fun!.
Set a0 = 6−4√2 and y0 = √2−1 and k=0, 1, 2, 3................... Iterate:
yk+1 = 1−(1−y^4 k)^1/4 / 1 + (1−y^4 k)^1/4 ..............................(1)
and ak+1 = ak(1 + yk+1)^4 − 2^(2k+3)yk+1(1 + yk+1 + y^2 k+1)..(2)
Borwein's algorithm:Quartic algorithm (1985)Start out by setting[1]a0=2(√2−1)2=6−4√2y0=√2−1Then iterateyk+1=1−(1−y4k)1/41+(1−y4k)1/4ak+1=ak(1+yk+1)4−22k+3yk+1(1+yk+1+y2k+1)Then ak converges quartically against 1/π; that is, each iteration approximately quadruples the number of correct digits.
see: https://en.wikipedia.org/wiki/Borwein's_algorithm