Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+10

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

1111x2 dxSubstitution : x=sin(u)u=arcsin(x) dx=cos(u) du1111x2 dx=1111sin2(u) dx=1111sin2(u) dx|1sin2(u)=cos2(u)=111cos2(u) dx=111cos(u) dx=111cos(u) dx|dx=cos(u) du=111cos(u)cos(u) du=11 du=[u]11|u=arcsin(x)1111x2 dx=[ arcsin(x) ]111111x2 dx=[ arcsin(x) ]11=[ arcsin(1)arcsin(1) ]=[ π2π2 ]=[ π2+π2 ]=π1111x2 dx=π1111x2 dx=3.14159265359

laugh

.
15.02.2016
 #2
avatar+26396 
0

 

Siehe Bundeswettbewerb für Mathematik 2016

https://www.mathe-wettbewerbe.de/bwm/aufgaben

 

Die Antworten sind dann kurz nach dem Einsendeschluss 1. März 2016 auf der homepage des Bundeswettbewerbs Mathematik zu finden.

 

Die Lösung solltest du schon selber finden.

 

laugh

12.02.2016
 #14
avatar+26396 
+5

I am less than 500. All three digits are odd. All three digits are different. The sum of the digits is thirteen. The product of my digits is greater than 30. I am not divisible by 5. Who am I?

 

(1)x+y+z=13z=13(x+y)(2)x100+y10+z<500x100+y10+13(x+y)<50099x+9y+13<5009y<99x+500139y<99x+487 y < 11x+4879 (3)xyz>30xy>30z xy > 3013(x+y) 

 

I have put  y < 11x+4879 and  xy > 3013(x+y) in https://www.desmos.com/calculator
se we have a result of 5 Points. see:

 

Now let us see:

xyz=13(x+y)result1513(1+5)=7yes1713(1+7)=5no, because  175  is divisible by  53313(3+3)=7no, because  x=y3513(3+5)=5no, because  y=z3713(3+7)=3no, because  x=z

 

There is only one number 157

 

laugh

12.02.2016
 #3
avatar+26396 
+5

1. Given that cschx=-9/40, find the exact value of coshx and tanh2x

 

csch(x)=940cosh(x)=1+csch2(x)csch(x)cosh(x)=1+(940)2940cosh(x)=4091+(940)2cosh(x)=4091+811600)cosh(x)=40916811600)cosh(x)=4094140cosh(x)=419sinh(x)=1csch(x)sinh(x)=1940sinh(x)=409

sinh(2x)=2sinh(x)cosh(x)cosh(2x)=cosh2(x)+sinh2(x)=2cosh2(x)1=1+2sinh2(x)tanh(2x)=sinh(2x)cosh(2x)tanh(2x)=2sinh(x)cosh(x)1+2sinh2(x)tanh(2x)=2(409)(419)1+2(409)2tanh(2x)=2(404199)1+2(40292)tanh(2x)=2(404192)92+240292tanh(2x)=2404192+2402tanh(2x)=32803281

 

2. Solve the equation

x=tanh( ln( 6x ) ) for 0<x<1

x=tanh( ln( 6x ) )|tanh1()tanh1(x)=ln( 6x )|tanh1(x)=12ln( 1+x1x ) for 1<x<112ln( 1+x1x )=ln( 6x )ln( [1+x1x]12 )=ln( 6x )[1+x1x]12=6x1+x1x=6x|(square both sides)1+x1x=6x1+x=6x(1x)1+x=6x6x26x26x+x+1=0

 

 ax2+bx+c=0x=b±b24ac2a 

 

6x25x+1=0a=6b=5c=1x1,2=(5)±(5)246126x1,2=5±252412x1,2=5±112x1,2=5±112x1=5+112x1=612x1=12x2=5112x2=412x2=13

 

{nl} laugh

11.02.2016
 #1
avatar+26396 
+10

To: heureka and others..........

If you calculate the value of yk+1 in (1) and feed it into (2) and repeat the iterations at least 2-3 times, what does the result converge to and what is the rate of convegence, i.e., is it: quadratic, cubic, quartic.....etc. Also, what is the source of this algorithm? Thanks and have fun!.

Set a0 = 6−4√2 and y0 = √2−1 and k=0, 1, 2, 3................... Iterate:

 

yk+1 = 1−(1−y^4 k)^1/4 / 1 + (1−y^4 k)^1/4 ..............................(1)

and ak+1 = ak(1 + yk+1)^4 − 2^(2k+3)yk+1(1 + yk+1 + y^2 k+1)..(2)

 

Borwein's algorithm:Quartic algorithm (1985)Start out by setting[1]a0=2(21)2=642y0=21Then iterateyk+1=1(1y4k)1/41+(1y4k)1/4ak+1=ak(1+yk+1)422k+3yk+1(1+yk+1+y2k+1)Then  ak converges quartically against  1/π; that is, each iteration approximately quadruples the number of correct digits.

 

see: https://en.wikipedia.org/wiki/Borwein's_algorithm

 

laugh

11.02.2016
 #2
avatar+26396 
+5

Find the surface area of the figure. Round your answer to the nearest hundredth.

H; 18mm

R; 6mm

r; 3mm

 

Area inside is a cylinder with radius r Ai=(2πr)hArea outside is a cylinder with radius R Ao=(2πR)hArea top is a ring Ar1=πR2πr2Area bottom is a ring Ar2=πR2πr2Area of the figure is the sum A=Ai+Ao+Ar1+Ar2A=(2πr)h+(2πR)h+πR2πr2+πR2πr2A=(2πr)h+(2πR)h+2πR22πr2A=2π(rh+Rh+R2r2)A=2π[h(r+R)+R2r2]|R2r2=(R+r)(Rr)A=2π[h(r+R)+(R+r)(Rr)]A=2π[h(r+R)+(r+R)(Rr)]A=2π(r+R)(h+Rr)A=2(r+R)(h+Rr)π

 

A=2(r+R)(h+Rr)πr=3 mmR=6 mmh=18 mmA=2(3+6)(18+63)πA=2921π mm2A=378π mm2A=1187.52202306 mm2A=1187.52 mm2( rounded to the nearest hundredth)

 

or

A=1187.52202306 mm21 cm10 mm1 cm10 mmA=1187.52202306100 cm2A=11.8752202306 cm2A=11.8752 cm2

 

 

laugh

11.02.2016