I am less than 500. All three digits are odd. All three digits are different. The sum of the digits is thirteen. The product of my digits is greater than 30. I am not divisible by 5. Who am I?
\(\begin{array}{lrcll} (1) & x + y + z &=& 13 \\ & z &=& 13-(x+y) \\ (2) & x\cdot 100 + y\cdot 10 + z &<& 500 \\ & x\cdot 100 + y\cdot 10 + 13-(x+y) &<& 500 \\ & 99x + 9y + 13 &<& 500 \\ & 9y &<& - 99x + 500 - 13 \\ & 9y &<& - 99x + 487 \\ && & \boxed{~ \mathbf{ y } ~ \mathbf{<}~ \mathbf{- 11x + \frac{487}{9} } \\ ~}\\ (3) & x\cdot y \cdot z &>& 30\\ & x\cdot y &>& \frac{30}{z}\\ &&& \boxed{~ \mathbf{x\cdot y } ~\mathbf{>}~ \mathbf{\frac{30}{13-(x+y)} }\\ ~} \end{array} \)
I have put \(y ~<~ - 11x + \frac{487}{9} \) and \(x\cdot y ~>~ \frac{30}{13-(x+y)} \) in https://www.desmos.com/calculator
se we have a result of 5 Points. see:
Now let us see:
\(\begin{array}{|r|r|r|r|} \hline x & y & z=13-(x+y) & \text{result}\\ \hline 1 & 5 & 13 - (1+5) = 7 & {\color{red}\text{yes}}\\ 1 & 7 & 13 - (1+7) = 5 & \text{no, because }~ 175 ~\text{ is divisible by }~ 5\\ 3 & 3 & 13 - (3+3) = 7 & \text{no, because }~ x = y \\ 3 & 5 & 13 - (3+5 )= 5 & \text{no, because }~ y = z \\ 3 & 7 & 13 - (3+7 )= 3 & \text{no, because }~ x = z \\ \hline \end{array} \)
There is only one number 157
To: heureka and others..........
If you calculate the value of yk+1 in (1) and feed it into (2) and repeat the iterations at least 2-3 times, what does the result converge to and what is the rate of convegence, i.e., is it: quadratic, cubic, quartic.....etc. Also, what is the source of this algorithm? Thanks and have fun!.
Set a0 = 6−4√2 and y0 = √2−1 and k=0, 1, 2, 3................... Iterate:
yk+1 = 1−(1−y^4 k)^1/4 / 1 + (1−y^4 k)^1/4 ..............................(1)
and ak+1 = ak(1 + yk+1)^4 − 2^(2k+3)yk+1(1 + yk+1 + y^2 k+1)..(2)
\(\begin{array}{rcll} \text{Borwein's algorithm:}\\\\ \end{array} \\ \begin{array}{rcll} \text{Quartic algorithm (1985)}\\\\ \end{array} \\ \text{Start out by setting[1]}\\ \begin{array}{rcll} a_0 & =& 2\big(\sqrt{2}-1\big)^2 = 6-4\sqrt{2}\\ y_0 & =& \sqrt{2}-1 \end{array} \\ \begin{array}{rcll} \\ \text{Then iterate}\\ \end{array} \\ \\ \begin{array}{rcll} y_{k+1} & =& \frac{1-(1-y_k^4)^{1/4}}{1+(1-y_k^4)^{1/4}} \\ a_{k+1} & =& a_k(1+y_{k+1})^4 - 2^{2k+3} y_{k+1} (1 + y_{k+1} + y_{k+1}^2) \end{array} \\ \\ \text{Then }~a_k \text{ converges quartically against }~ 1/\pi; \\ \text{ that is, each iteration approximately quadruples the number of correct digits.} \)
see: https://en.wikipedia.org/wiki/Borwein's_algorithm