heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+10

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

\(\small{ \begin{array}{lrcll} &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } \\ \hline \text{Substitution : } & x &=& \sin{(u)} \qquad \rightarrow \qquad u = \arcsin{(x)}\\ & \ dx &=& \cos{(u)}\ du \\ \hline &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \qquad | \qquad 1-\sin^2{(u)} = \cos^2{(u)}\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{\cos^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \qquad | \qquad dx = \cos{(u)}\ du\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} }\cdot \cos{(u)}\ du } \\ & &=&\int \limits_{-1}^{1} { \ du } \\ & &=& [ u ]_{-1}^{1} \qquad | \qquad u = \arcsin{(x)} \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } & \mathbf{=} & \mathbf{ [~ \arcsin{(x)} ~]_{-1}^{1} }\\ \hline & \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } & = & [~ \arcsin{(x)} ~]_{-1}^{1} \\ & & = & [~ \arcsin{(1)}-\arcsin{(-1)} ~]\\ & & = & [~ \frac{\pi}{2} -\frac{-\pi}{2} ~]\\ & & = & [~ \frac{\pi}{2} +\frac{\pi}{2} ~]\\ & & = & \pi \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ \pi } \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ 3.14159265359 } \end{array} }\)

laugh

.
15.02.2016
 #2
avatar+26387 
0

 

Siehe Bundeswettbewerb für Mathematik 2016

https://www.mathe-wettbewerbe.de/bwm/aufgaben

 

Die Antworten sind dann kurz nach dem Einsendeschluss 1. März 2016 auf der homepage des Bundeswettbewerbs Mathematik zu finden.

 

Die Lösung solltest du schon selber finden.

 

laugh

12.02.2016
 #3
avatar+26387 
+5

1. Given that cschx=-9/40, find the exact value of coshx and tanh2x

 

\(\begin{array}{rcll} csch(x) & =& -\frac{9}{40} \\\\ cosh(x) & =& \frac{ \sqrt{1+csch^2(x)} } { csch(x) }\\ cosh(x) & =& \frac{ \sqrt{1+ (-\frac{9}{40})^2 } } { -\frac{9}{40} }\\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{1+ (-\frac{9}{40})^2 } \\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{1+ \frac{81}{1600}) } \\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{ \frac{1681}{1600}) } \\ cosh(x) & =& -\frac{40}{9} \cdot \frac{41}{40} \\\\ cosh(x) & =& -\frac{41}{9} \\ \hline \\ sinh(x) & =& \frac{ 1 } { csch(x) }\\ sinh(x) & =& \frac{ 1 } { -\frac{9}{40} }\\ sinh(x) & =& -\frac{40}{9}\\ \hline \\ \end{array} \\\)

\(\begin{array}{rcll} sinh (2x) &=& 2\cdot sinh (x)\cdot cosh (x)\\ cosh (2x) &=& cosh^2(x) + sinh^2(x) = 2 \cdot cosh^2(x) — 1 = 1 + 2\cdot sinh^2(x)\\\\ tanh (2x) &=& \frac{ sinh(2x) } { cosh(2x) } \\ tanh (2x) &=& \frac{ 2\cdot sinh (x)\cdot cosh (x) } { 1 + 2\cdot sinh^2(x) } \\ tanh (2x) &=& \frac{ 2\cdot (-\frac{40}{9})\cdot (-\frac{41}{9}) } { 1 + 2\cdot (-\frac{40}{9})^2 } \\ tanh (2x) &=& \frac{ 2\cdot (\frac{40\cdot 41}{9\cdot 9}) } { 1 + 2\cdot (\frac{40^2}{9^2}) } \\ tanh (2x) &=& \frac{ 2\cdot (\frac{40\cdot 41}{9^2}) } { \frac{9^2 +2\cdot 40^2}{9^2} } \\ tanh (2x) &=& \frac{ 2\cdot 40 \cdot 41 } { 9^2 +2\cdot 40^2 } \\\\ tanh (2x) &=& \frac{ 3280 } { 3281 }\\ \hline \\ \end{array}\)

 

2. Solve the equation

\(x=tanh(~ \ln{(~ \sqrt{6x}~) } ~) \quad \text{ for } 0 < x < 1 \)

\(\begin{array}{rcll} x &=& tanh(~ \ln{(~ \sqrt{6x}~) } ~) \qquad & | \qquad tanh^{-1}() \\ tanh^{-1}(x) &=& \ln{(~ \sqrt{6x}~) } \qquad & | \qquad tanh^{-1}(x) = \frac12\cdot \ln{(~\frac{1+x}{1-x}~)} \quad \text{ for } \quad -1<x<1\\ \frac12\cdot \ln{(~\frac{1+x}{1-x}~)} &=& \ln{(~ \sqrt{6x}~) } \\ \ln{(~[\frac{1+x}{1-x}]^\frac12~)} &=& \ln{(~ \sqrt{6x}~) } \\ \left[\frac{1+x}{1-x} \right]^\frac12 &=& \sqrt{6x}\\ \sqrt{\frac{1+x}{1-x} } &=& \sqrt{6x} \qquad & | \qquad (\text{square both sides})\\ \frac{1+x}{1-x} &=& 6x \\ 1+x &=& 6x\cdot ( 1-x ) \\ 1+x &=& 6x - 6x^2 \\ 6x^2 -6x + x + 1 &=& 0 \\ \end{array}\)

 

\(\boxed{~ \begin{array}{rcll} ax^2+bx+c &=& 0 \\ x &=& \dfrac{-b \pm \sqrt{b^2-4ac} }{2a} \end{array} ~}\)

 

\(\small{ \begin{array}{rcll} 6x^2 -5x + 1 &=& 0 \qquad & a = 6 \qquad b = -5 \qquad c = 1\\ x_{1,2} &=& \dfrac{-(-5) \pm \sqrt{(-5)^2-4\cdot 6 \cdot 1} }{2\cdot 6} \\ x_{1,2} &=& \dfrac{ 5 \pm \sqrt{25 - 24} }{ 12 } \\ x_{1,2} &=& \dfrac{ 5 \pm \sqrt{1} }{ 12 } \\ x_{1,2} &=& \dfrac{ 5 \pm 1 }{ 12 } \\\\ x_1 &=& \dfrac{ 5 + 1 }{ 12 } \\ x_1 &=& \dfrac{ 6 }{ 12 } \\ \mathbf{x_1} &\mathbf{=}& \mathbf{\dfrac{ 1 }{ 2 } }\\ \hline \\ x_2 &=& \dfrac{ 5 - 1 }{ 12 } \\ x_2 &=& \dfrac{ 4 }{ 12 } \\ \mathbf{x_2} &\mathbf{=}& \mathbf{\dfrac{ 1 }{ 3 } } \\ \hline \end{array} } \)

 

{nl} laugh

11.02.2016
 #2
avatar+26387 
+5

Find the surface area of the figure. Round your answer to the nearest hundredth.

H; 18mm

R; 6mm

r; 3mm

 

\(\begin{array}{lrcll} \text{Area inside is a cylinder with radius r } & A_i &=& ( 2\pi r ) \cdot h \\ \text{Area outside is a cylinder with radius R } & A_o &=& ( 2\pi R ) \cdot h \\ \text{Area top is a ring } & A_{r_1} &=& \pi R^2 - \pi r^2 \\ \text{Area bottom is a ring } & A_{r_2} &=& \pi R^2 - \pi r^2 \\ \hline \\ \text{Area of the figure is the sum } \\ \end{array}\\ \begin{array}{lrcll} & A &=& A_i + A_o + A_{r_1} + A_{r_2} \\ & A &=& ( 2\pi r ) \cdot h + ( 2\pi R ) \cdot h + \pi R^2 - \pi r^2 + \pi R^2 - \pi r^2 \\ & A &=& ( 2\pi r ) \cdot h + ( 2\pi R ) \cdot h + 2\pi R^2 - 2\pi r^2 \\ & A &=& 2\pi ( r \cdot h + R \cdot h + R^2 - r^2 ) \\ & A &=& 2\pi [ h(r + R) + R^2 - r^2 ] \qquad & | \qquad R^2 - r^2 = ( R + r )(R - r)\\ & A &=& 2\pi [ h(r + R) + ( R + r )(R - r) ] \\ & A &=& 2\pi [ h(r + R) + ( r + R )(R - r) ] \\ & A &=& 2\pi (r + R)( h + R - r ) \\\\ & \mathbf{ A }& \mathbf{=} & \mathbf{ 2\cdot (r + R)\cdot ( h + R - r )\cdot \pi } \\ \end{array}\)

 

\(\begin{array}{lrcll} & A & = & 2\cdot (r + R)\cdot ( h + R - r )\cdot \pi \qquad r = 3\ mm \qquad R = 6\ mm \qquad h = 18\ mm \\ & A & = & 2\cdot (3 + 6)\cdot ( 18 + 6 - 3 )\cdot \pi \\ & A & = & 2\cdot 9\cdot 21 \cdot \pi \ mm^2 \\ & A & = & 378\cdot \pi \ mm^2 \\ & A & = & 1187.52202306 \ mm^2 \\ & \mathbf{A} & \mathbf{ = } & \mathbf{1187.52 \ mm^2 \qquad (\text{ rounded to the nearest hundredth}) }\\ \end{array}\)

 

or

\(\begin{array}{lrcll} & A & = & 1187.52202306 \ mm^2 \cdot \frac{1\ cm}{10\ mm} \cdot \frac{1\ cm}{10\ mm} \\ & A & = & \frac{1187.52202306}{100} \ cm^2 \\ & A & = & 11.8752202306 \ cm^2 \\ & A & = & 11.8752 \ cm^2 \\ \end{array}\)

 

 

laugh

11.02.2016