Hallo aditya@calc.com,
sorry i have no closed solution. Here my way so far.
\(\small{ \begin{array}{rcl} 3^{2n+2} -8n -9 &=& 3^{2n}\cdot 3^2-8n-9 \\ &=& 3^{2n}\cdot 9-8n-9 \\ &=& (3^2)^n\cdot 9-8n-9 \\ &=& 9^n\cdot 9-8n-9 \\ &=& 9^{n+1}-8n-9 \\ &=& (1+8)^{n+1}-8n-9 \\ &=& -8n-9 + (1+8)^{n+1}\\ &=& -8n-9 + \underbrace{\binom{n+1}{0}+ \binom{n+1}{1}\cdot 8}_{=8n+9} + \binom{n+1}{2}\cdot 8^2 + \binom{n+1}{3}\cdot 8^3 + \binom{n+1}{4}\cdot 8^4 +\cdots \\ && + \binom{n+1}{n-1}\cdot 8^{n-1} + \binom{n+1}{n}\cdot 8^{n} + \binom{n+1}{n+1}\cdot 8^{n+1} \\\\ &=& \binom{n+1}{2}\cdot 8^2 + \binom{n+1}{3}\cdot 8^3 + \binom{n+1}{4}\cdot 8^4 +\cdots + \binom{n+1}{n-1}\cdot 8^{n-1} + \binom{n+1}{n}\cdot 8^{n} + \binom{n+1}{n+1}\cdot 8^{n+1} \\\\ &=& \binom{n+1}{2}\cdot 2^6 + \binom{n+1}{3}\cdot 2^9 + \binom{n+1}{4}\cdot 2^{12} +\cdots + \binom{n+1}{n-1}\cdot 2^{3n-3} + \binom{n+1}{n}\cdot 2^{3n} + \binom{n+1}{n+1}\cdot 2^{3n+3} \\ \end{array} }\)
It is not easy to factorize the binoms \(\binom{n+1}{2},~\binom{n+1}{3},~\binom{n+1}{3}\cdots\) to get the exponent of the prim number 2 for every n
but m mimimum is 6, because we have \(2^6\)
It seems that (no proof !!!!)
\(\begin{array}{rcl} \binom{n+1}{2}\cdot 2^6 &=& 2^m\cdot p \\\\ (n+1)\cdot n \cdot 2^5 &=& 2^m\cdot p \\ \end{array}\)
Example:
\(\begin{array}{|r|c|l|} \hline n & m & p \\ \hline 1 & 6 & 1 \\ 2 & 6 & 3 \\ \hline 3 & 7 & 3 \\ 4 & 7 & 5 \\ \hline 5 & 6 & 15 \\ 6 & 6 & 21 \\ \hline 7 & 8 & 7 \\ 8 & 8 & 9 \\ \hline 9 & 6 & 45 \\ 10 & 6 & 55 \\ \hline 11 & 7 & 33 \\ 12 & 7 & 39 \\ \hline 13 & 6 & 91 \\ 14 & 6 & 105 \\ \hline 15 & 9 & 15 \\ 16 & 9 & 17 \\ \hline 17 & 6 & 153 \\ 18 & 6 & 171 \\ \hline \cdots \\ \hline \end{array}\)