Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+5

31x42x+1 dx= ?

 

31x42x+1 dx=31x2x+1 dx43112x+1 dx=31x2(x+12) dx43112x+1 dx=1231xx+12 dx43112x+1 dx=1231x+1212x+12 dx43112x+1 dx=1231 dx+123112x+12 dx43112x+1 dx=1231 dx14311x+12 dx43112x+1 dx=1231 dx94311x+12 dx=12[x]3194[ln(x+12)]31=12(31)94[ln(3+12)ln(1+12)]=12(31)94[ln(72)ln(32)]=12(31)94[ln(7232)]=12(31)94[ln(73)]=12(2)94[ln(73)]=194[ln(73)]=12,250,84729786039=11,90642018587=0,9064201858731x42x+1 dx=0,90642018587

 

laugh

07.01.2016
 #2
avatar+26397 
+20

On a certain college faculity, 4/7 of the professors are male, and the ratio of the professors older than 50 to the professors less than or equal to 50 years is 2:5. if 1/5 of the male professors are older than 50 years, what fraction of the female professors are less than or equal to 50 years ?

 

 

m>50=4715=435m50=4745=1635m>50+m50=435+1635=2035f>50+f50=1(m>50+m50)=12035=1535f>50=1535f50m>50+f>50m50+f50=255(m>50+f>50)=2(m50+f50)|f>50=1535f505(m>50+1535f50)=2(m50+f50)5(435+1535f50)=2(1635+f50)5(1935f50)=2(1635+f50)95355f50=3235+2f507f50=953532357f50=6335f50=63357female50=935

 

laugh

07.01.2016
 #2
avatar+26397 
+5

what is 111...1(total of one hundred ones) divided by 1,111,111 ( answer with remainder, not fraction or decimal )

 

You can divide the number in  arbitrarily sections.

Devide all parts by 1 111 111, but attach the remainder of the previous calculation left.

 

 

Example:

11111111. partition 11111112. partition 11111113. partition 11111114. partition 11111115. partition 11111116. partition 11111117. partition 11111118. partition 11111119. partition 111111110. partition 111111111. partition 111111112. partition 111111113. partition 111111114. partition 1115. partition 

 

11111111. partition:1 111 111=1 Remainder =0attach Remainder011111112. partition:1 111 111=1 Remainder =0attach Remainder011111113. partition:1 111 111=1 Remainder =0attach Remainder011111114. partition:1 111 111=1 Remainder =0attach Remainder011111115. partition:1 111 111=1 Remainder =0attach Remainder011111116. partition:1 111 111=1 Remainder =0attach Remainder011111117. partition:1 111 111=1 Remainder =0attach Remainder011111118. partition:1 111 111=1 Remainder =0attach Remainder011111119. partition:1 111 111=1 Remainder =0attach Remainder0111111110. partition:1 111 111=1 Remainder =0attach Remainder0111111111. partition:1 111 111=1 Remainder =0attach Remainder0111111112. partition:1 111 111=1 Remainder =0attach Remainder0111111113. partition:1 111 111=1 Remainder =0attach Remainder0111111114. partition:1 111 111=1 Remainder =0attach Remainder01115. partition:1 111 111=0 Remainder =11

 

 

laugh

07.01.2016
 #2
avatar+26397 
+5

Berechnung der Bogenlänge einer Kurve, es gilt

L(c)=ba|| ˙c(t) || dt

 

Für die Polarkoordinaten rr(t) und φφ(t) gilt: c(t)=(cos(t)sin(t))=(cos(t),sin(t))T für atbL(c)=ba˙r2+r2˙φ2 dt.

 

Wir haben eine Kardioide (Herzlinie)  in Polarkoordinaten

L(c)=2π0|| [ a(1+cos(t)) ] || dtr(t)=a(1+cos(t))φ(t)=t˙r(t)=asin(t)[˙r(t)]2=˙r2=a2sin2(t)[r(t)]2=r2=a2(1+cos(t))2˙φ(t)=˙φ=1[˙φ(t)]2=˙φ2=12=1a=0b=2πL(c)=ba˙r2+r2˙φ2 dtL(c)=2π0˙r2+r2˙φ2 dtL(c)=2π0a2sin2(t)+a2(1+cos(t))21 dt=2π0a2sin2(t)+a2(1+2cos(t)+cos2(t)) dt=a2π0sin2(t)+1+2cos(t)+cos2(t) dt=a2π0sin2(t)+cos2(t)+1+2cos(t) dt=a2π01+1+2cos(t) dt=a2π02(1+cos(t)) dt=a22π01+cos(t) dt Formel: cos(2α)=2cos2(α)1cos(α)=2cos2(α2)11+cos(α)=2cos2(α2)1+cos(α)=2cos(α2) =a22π02| cos(t2) | dt=2a2π0| cos(t2) | dt=2a[2π0cos(t2) dt]=4aπ0cos(t2) dt=4a[2sin(t2)]π0=8a[sin(π2)sin(02)]=8a[10]L(c)=8a

 

Die  Kardioide (Herzlinie) hat die Bogenlänge von 8a

 

laugh

07.01.2016
 #7
avatar+26397 
+10

Hallo aditya@calc.com,

 

sorry i have no closed solution. Here my way so far.

 

32n+28n9=32n328n9=32n98n9=(32)n98n9=9n98n9=9n+18n9=(1+8)n+18n9=8n9+(1+8)n+1=8n9+(n+10)+(n+11)8=8n+9+(n+12)82+(n+13)83+(n+14)84++(n+1n1)8n1+(n+1n)8n+(n+1n+1)8n+1=(n+12)82+(n+13)83+(n+14)84++(n+1n1)8n1+(n+1n)8n+(n+1n+1)8n+1=(n+12)26+(n+13)29+(n+14)212++(n+1n1)23n3+(n+1n)23n+(n+1n+1)23n+3

 

 

It is not easy to factorize the binoms (n+12), (n+13), (n+13)  to get the exponent of the prim number 2 for every n

but m mimimum is 6, because we have 26

 

It seems that (no proof !!!!)

  (n+12)26=2mp(n+1)n25=2mp

 

Example:

nmp161263373475561566217878899645106551173312739136911461051591516917176153186171

 

laugh

07.01.2016