Hallo aditya@calc.com,
sorry i have no closed solution. Here my way so far.
32n+2−8n−9=32n⋅32−8n−9=32n⋅9−8n−9=(32)n⋅9−8n−9=9n⋅9−8n−9=9n+1−8n−9=(1+8)n+1−8n−9=−8n−9+(1+8)n+1=−8n−9+(n+10)+(n+11)⋅8⏟=8n+9+(n+12)⋅82+(n+13)⋅83+(n+14)⋅84+⋯+(n+1n−1)⋅8n−1+(n+1n)⋅8n+(n+1n+1)⋅8n+1=(n+12)⋅82+(n+13)⋅83+(n+14)⋅84+⋯+(n+1n−1)⋅8n−1+(n+1n)⋅8n+(n+1n+1)⋅8n+1=(n+12)⋅26+(n+13)⋅29+(n+14)⋅212+⋯+(n+1n−1)⋅23n−3+(n+1n)⋅23n+(n+1n+1)⋅23n+3
It is not easy to factorize the binoms (n+12), (n+13), (n+13)⋯ to get the exponent of the prim number 2 for every n
but m mimimum is 6, because we have 26
It seems that (no proof !!!!)
(n+12)⋅26=2m⋅p(n+1)⋅n⋅25=2m⋅p
Example:
nmp161263373475561566217878899645106551173312739136911461051591516917176153186171⋯
