1. |x2-1|=|x-1|
\(\begin{array}{rcll} |x^2-1| &=& |x-1| \qquad & (x^2-1) = (x-1)(x+1) \\ (|(x-1)(x+1)|)^2 &=& (|x-1|)^2 \qquad & (\text{square both sides}) \\ (~(x-1)(x+1)~)^2 &=& (x-1)^2 \qquad & (~(ab)^2 = a^2b^2~) \\ (x-1)^2(x+1)^2 &=& (x-1)^2 \\ (x-1)^2(x+1)^2-(x-1)^2 &=& 0\\ (x-1)^2\left[(x+1)^2-1 \right] &=& 0\\ (x-1)^2(x^2+2x+1-1) &=& 0\\ (x-1)^2(x^2+2x) &=& 0\\ (x-1)^2\cdot x \cdot (x+2) &=& 0\\ (x-1)\cdot (x-1)\cdot x \cdot (x+2) &=& 0 \end{array}\\ \begin{array}{rrcl} \\ 1. & x-1=0 && x=1 \\ 2. & x = 0 \\ 3. & x+2 = 0 && x = -2 \end{array}\)
2. 3|x-2|=2|x-3|
\(\begin{array}{rcll} 3|x-2| &=& 2|x-3| \\ (3|x-2|)^2 &=& (2|x-3|)^2 \qquad & (\text{square both sides}) \\ 3^2(x-2)^2 &=& 2^2(x-3)^2 \qquad & (~(ab)^2 = a^2b^2~) \\ 9(x-2)^2 &=& 4(x-3)^2 \\ 9(x^2-4x+4) &=& 4(x^2-6x+9) \\ 9x^2-36x+36 &=& 4x^2-24x+36 \\ 9x^2-36x &=& 4x^2-24x\\ 5x^2-12x &=& 0\\ x\cdot(5x-12) &=& 0\\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x = 0 \\ 2. & 5x-12=0 && x=\frac{12}{5} \end{array}\)
3. |4-x|=5
\(\begin{array}{rcll} |4-x| &=& 5 \\ (|4-x|)^2 &=& (5)^2 \qquad & (\text{square both sides}) \\ (4-x)^2 &=& 25 \qquad & (\pm\sqrt{}) \\ 4-x &=& \pm 5\\ x &=& 4 \pm 5 \\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x = 4+5 && x = 9 \\ 2. & x = 4-5 && x = -1 \end{array}\)
4. |2x-7|=|x-5|
\(\begin{array}{rcll} |2x-7| &=& |x-5| \\ (|2x-7|)^2 &=& (|x-5|)^2 \qquad & (\text{square both sides}) \\ (2x-7)^2 &=& (x-5)^2 \\ 4x^2-28x+49 &=& x^2-10x+25\\ 3x^2-18x+24 &=& 0\qquad & :3\\ x^2-6x+8 &=& 0\\ (x-4)(x-2) &=& 0 \end{array}\\ \begin{array}{rrcl} \\ 1. & x-4=0 && x = 4 \\ 2. & x-2=0 && x=2 \end{array}\)
5. |x2-x|=|x2-1|
\(\begin{array}{rcll} |x^2-x| &=& |x^2-1| \\\\ \qquad x^2-x = x(x-1) \\ \qquad (x^2-1) = (x-1)(x+1) \\\\ |x(x-1)| &=& |(x-1)(x+1)| \\ (~|x(x-1)|~)^2 &=& (~|(x-1)(x+1)|~)^2 & (\text{square both sides}) \\ (~x(x-1)~)^2 &=& (~(x-1)(x+1)~)^2 & (~(ab)^2 = a^2b^2~) \\ x^2(x-1)^2 &=& (x-1)^2(x+1)^2\\ x^2(x-1)^2 - (x-1)^2(x+1)^2 &=& 0\\ (x-1)^2 [ x^2 - (x+1)^2 ] &=& 0\\ (x-1)^2 ( x^2 - x^2-2x-1 ) &=& 0\\ (x-1)^2 ( -2x-1 ) &=& 0\\ (x-1)\cdot (x-1)\cdot ( -2x-1 ) &=& 0\\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x-1=0 && x=1 \\ 2. & -2x-1 = 0 && x = -\frac{1}{2} \end{array}\)