heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #22
avatar+26387 
+5

On a certain college faculity, 4/7 of the professors are male, and the ratio of the professors older than 50 to the professors less than or equal to 50 years is 2:5. if 1/5 of the male professors are older than 50 years, what fraction of the female professors are less than or equal to 50 years ?

 

\(\begin{array}{rcl} m_{>50} &=& \frac47\cdot \frac15 = \frac{4}{35} \\ m_{\le50} &=& \frac47\cdot \frac45 = \frac{16}{35} \\ m_{>50} + m_{\le50} &=& \frac{4}{35} + \frac{16}{35} = \frac{20}{35} \\\\ f_{>50} + f_{\le50} &=& 1- ( m_{>50} + m_{\le50} ) = 1- \frac{20}{35} = \frac{15}{35} \\ f_{>50} &=& \frac{15}{35} - f_{\le50} \\\\ \frac{m_{>50}+f_{>50}}{m_{\le50}+f_{\le50}} &=& \frac25 \\ 5\cdot ( m_{>50}+f_{>50} ) &=& 2\cdot ( m_{\le50}+f_{\le50} ) \qquad | \qquad f_{>50} = \frac{15}{35} - f_{\le50} \\ 5\cdot ( m_{>50}+\frac{15}{35} - f_{\le50} ) &=& 2\cdot ( m_{\le50}+f_{\le50} ) \\ 5\cdot ( \frac{4}{35}+\frac{15}{35} - f_{\le50} ) &=& 2\cdot ( \frac{16}{35}+f_{\le50} ) \\ 5\cdot ( \frac{19}{35} - f_{\le50} ) &=& 2\cdot ( \frac{16}{35}+f_{\le50} ) \\ \frac{95}{35} - 5\cdot f_{\le50} &=& \frac{32}{35}+2\cdot f_{\le50} \\ 7\cdot f_{\le50} &=& \frac{95}{35} - \frac{32}{35} \\ 7\cdot f_{\le50} &=& \frac{63}{35} \\ f_{\le50} &=& \frac{63}{35\cdot 7 } \\ \text{female}_{\le50} &=& \frac{9}{35} \end{array} \)

 

\(\begin{array}{rcl} \hline \text{continuation}\\ \hline \\ \frac{ \text{female}_{\le50}}{f+m} &=& \frac{9}{35} \\ \text{female}_{\le50} &=& \frac{9}{35}\cdot (f+m) \quad | \quad :f \\ \frac{ \text{female}_{\le50}}{f} &=& \frac{9}{35}\cdot (1+\frac{m}{f}) \\\\ \boxed{~ \begin{array}{rcl} \frac{m}{m+f} &=& \frac{4}{7} \\ \frac{f}{m+f} &=& 1- \frac{4}{7} = \frac{3}{7}\\ \frac{ \frac{m}{m+f} } { \frac{f}{m+f} } &=& \frac{ \frac{4}{7} } { \frac{3}{7} }\\ \frac{ m } { f } &=& \frac43 \end{array} ~}\\\\ \frac{ \text{female}_{\le50}}{f} &=& \frac{9}{35}\cdot (1+ \frac43) \\ \frac{ \text{female}_{\le50}}{f} &=& \frac{9}{35}\cdot (\frac73) \\ \frac{ \text{female}_{\le50}}{f} &=& \frac{9\cdot 7}{35\cdot 3} \\ \frac{ \text{female}_{\le50}}{f} &=& \frac{3}{5} \\ \end{array}\)

 

laugh

08.01.2016
 #7
avatar+26387 
+10

1. |x2-1|=|x-1|

\(\begin{array}{rcll} |x^2-1| &=& |x-1| \qquad & (x^2-1) = (x-1)(x+1) \\ (|(x-1)(x+1)|)^2 &=& (|x-1|)^2 \qquad & (\text{square both sides}) \\ (~(x-1)(x+1)~)^2 &=& (x-1)^2 \qquad & (~(ab)^2 = a^2b^2~) \\ (x-1)^2(x+1)^2 &=& (x-1)^2 \\ (x-1)^2(x+1)^2-(x-1)^2 &=& 0\\ (x-1)^2\left[(x+1)^2-1 \right] &=& 0\\ (x-1)^2(x^2+2x+1-1) &=& 0\\ (x-1)^2(x^2+2x) &=& 0\\ (x-1)^2\cdot x \cdot (x+2) &=& 0\\ (x-1)\cdot (x-1)\cdot x \cdot (x+2) &=& 0 \end{array}\\ \begin{array}{rrcl} \\ 1. & x-1=0 && x=1 \\ 2. & x = 0 \\ 3. & x+2 = 0 && x = -2 \end{array}\)

 

2. 3|x-2|=2|x-3|

\(\begin{array}{rcll} 3|x-2| &=& 2|x-3| \\ (3|x-2|)^2 &=& (2|x-3|)^2 \qquad & (\text{square both sides}) \\ 3^2(x-2)^2 &=& 2^2(x-3)^2 \qquad & (~(ab)^2 = a^2b^2~) \\ 9(x-2)^2 &=& 4(x-3)^2 \\ 9(x^2-4x+4) &=& 4(x^2-6x+9) \\ 9x^2-36x+36 &=& 4x^2-24x+36 \\ 9x^2-36x &=& 4x^2-24x\\ 5x^2-12x &=& 0\\ x\cdot(5x-12) &=& 0\\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x = 0 \\ 2. & 5x-12=0 && x=\frac{12}{5} \end{array}\)

 

3. |4-x|=5

 

\(\begin{array}{rcll} |4-x| &=& 5 \\ (|4-x|)^2 &=& (5)^2 \qquad & (\text{square both sides}) \\ (4-x)^2 &=& 25 \qquad & (\pm\sqrt{}) \\ 4-x &=& \pm 5\\ x &=& 4 \pm 5 \\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x = 4+5 && x = 9 \\ 2. & x = 4-5 && x = -1 \end{array}\)

 

4. |2x-7|=|x-5|

\(\begin{array}{rcll} |2x-7| &=& |x-5| \\ (|2x-7|)^2 &=& (|x-5|)^2 \qquad & (\text{square both sides}) \\ (2x-7)^2 &=& (x-5)^2 \\ 4x^2-28x+49 &=& x^2-10x+25\\ 3x^2-18x+24 &=& 0\qquad & :3\\ x^2-6x+8 &=& 0\\ (x-4)(x-2) &=& 0 \end{array}\\ \begin{array}{rrcl} \\ 1. & x-4=0 && x = 4 \\ 2. & x-2=0 && x=2 \end{array}\)

 

5. |x2-x|=|x2-1|

\(\begin{array}{rcll} |x^2-x| &=& |x^2-1| \\\\ \qquad x^2-x = x(x-1) \\ \qquad (x^2-1) = (x-1)(x+1) \\\\ |x(x-1)| &=& |(x-1)(x+1)| \\ (~|x(x-1)|~)^2 &=& (~|(x-1)(x+1)|~)^2 & (\text{square both sides}) \\ (~x(x-1)~)^2 &=& (~(x-1)(x+1)~)^2 & (~(ab)^2 = a^2b^2~) \\ x^2(x-1)^2 &=& (x-1)^2(x+1)^2\\ x^2(x-1)^2 - (x-1)^2(x+1)^2 &=& 0\\ (x-1)^2 [ x^2 - (x+1)^2 ] &=& 0\\ (x-1)^2 ( x^2 - x^2-2x-1 ) &=& 0\\ (x-1)^2 ( -2x-1 ) &=& 0\\ (x-1)\cdot (x-1)\cdot ( -2x-1 ) &=& 0\\ \end{array}\\ \begin{array}{rrcl} \\ 1. & x-1=0 && x=1 \\ 2. & -2x-1 = 0 && x = -\frac{1}{2} \end{array}\)

 

laugh

08.01.2016