What are the first 4 terms of f(n-1)+15
If f(1) = 7
f(2)=f(2−1)+15f(2)=f(1)+15|f(1)=7f(2)=7+15f(2)=22f(3)=f(3−1)+15f(3)=f(2)+15|f(2)=22f(3)=22+15f(3)=37f(4)=f(4−1)+15f(4)=f(3)+15|f(3)=37f(4)=37+15f(4)=52⋯
arithmetic sequence: an=a1+(n−1)⋅d
f(n)=f(n−1)+15f(n)−f(n−1)=15d=15
a1=f(1)=7d=15an=7+(n−1)⋅15an=7+15n−15an=−8+15n
If f(1) = 7, what are the first 4 terms of f(n-1)+15
7, 21, 35, 49, 63, 77...........
What are the first 4 terms of f(n-1)+15
If f(1) = 7
f(2)=f(2−1)+15f(2)=f(1)+15|f(1)=7f(2)=7+15f(2)=22f(3)=f(3−1)+15f(3)=f(2)+15|f(2)=22f(3)=22+15f(3)=37f(4)=f(4−1)+15f(4)=f(3)+15|f(3)=37f(4)=37+15f(4)=52⋯
arithmetic sequence: an=a1+(n−1)⋅d
f(n)=f(n−1)+15f(n)−f(n−1)=15d=15
a1=f(1)=7d=15an=7+(n−1)⋅15an=7+15n−15an=−8+15n