Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
563
2
avatar

    Help with #49

 Dec 10, 2015

Best Answer 

 #2
avatar+26396 
+10

In the unit circle we find by using the periphery angle:

tan(θ2)=sin(θ)1+cos(θ)

 

 

49.

tan(θ2)=sin(θ)1+cos(θ)sin(θ)=35cos(θ)=45tan(θ2)=351+45tan(θ2)=3511+45tan(θ2)=3515+45tan(θ2)=3559tan(θ2)=39tan(θ2)=13

 

laugh

 Dec 11, 2015
 #1
avatar+130466 
+5

tan (theta/ 2)  = sqrt ( [1 - cos(theta)]  / [ 1 + cos(theta)] )  = sqrt ( [ 1 - (4/5)] / [ 1 + (4/5)])  =

 

sqrt ( [1/5] / [ 9/5] )  =  sqrt [ 1/9]   = 1/3

 

 

 

cool cool cool

 Dec 11, 2015
edited by CPhill  Dec 11, 2015
 #2
avatar+26396 
+10
Best Answer

In the unit circle we find by using the periphery angle:

tan(θ2)=sin(θ)1+cos(θ)

 

 

49.

tan(θ2)=sin(θ)1+cos(θ)sin(θ)=35cos(θ)=45tan(θ2)=351+45tan(θ2)=3511+45tan(θ2)=3515+45tan(θ2)=3559tan(θ2)=39tan(θ2)=13

 

laugh

heureka Dec 11, 2015

2 Online Users

avatar