+0  
 
0
1969
4
avatar
Ich soll 2hoch 100 modulu 7 ohne Taschenrechner rechnen wie mache ich das?
 01.03.2016
 #1
avatar+14537 
0

Guten Abend !

Ich habe es so gemacht:

 

Dies kann man im Kopf rechnen :     2^1   modulo 7 = 2

                                                              2^2        "          = 4

                                                              2^3         "         = 1

                                                              2^4         "         =  2

                                                              2^5         "         =  4

                                                              2^6         "         =  1  

                                         und so weiter !

 

Es ist immer die gleiche Reihenfolge :  2-4-1    -2-4-1    -2-4-1     -2-4-1....

Hier die Exponenten. die zum Ergebnis  2  führen:    1   4   7  10   13   16  ...   94   97   100

 

Ergebnis:       \(2^{100}modulo7=2\)

 

Gruß radix smiley !       Bestimmt gibt es eine elegantere Lösung !

 01.03.2016
 #2
avatar+14537 
0

Guten Morgen  heureka ,

ich habe es nun mit dem kleinen Rechteck ganz unten geschafft, diesen Anhang zu senden !

 

Gruß radix smiley !

radix  02.03.2016
 #3
avatar+14537 
0

Hallo  heureka !

 

Der Button  "Neue Antwort erstellen " ist bei mir wieder zu sehen und zu benutzen !!

Weshalb sollte es bei dir nicht so sein ????

 

Gruß radix smiley !

 02.03.2016
 #4
avatar+25574 
0

Ich soll 2 hoch 100 modulo 7 ohne Taschenrechner rechnen wie mache ich das?

 

\(\begin{array}{rcll} 2^{100}\pmod 7 \end{array}\)

 

Da 7 und die 2 teilerfremd sind, bzw. der größte gemeinsame Teiler ggT (7, 2)  = 1 ist,

erhält man sofort  mit \(\varphi(7) = 6 \) den zweier Exponenten mit \( 2^6 \equiv 1 \pmod 7.\)

wann der Rest 1 ist.

 

\(\varphi{(n)}\) ist die Eulersche PHI-Funktion.

(Satz von Euler) 

Es sei \(m \in N\)\(a \in Z\) und  ggT(a, m) = 1.

Dann ist  \(a^{\varphi(m)} \equiv 1 \pmod m\).

 

Jetzt zerlegen wir den Exponenten, die 100, in ein Vielfaches von 6 und einem Rest. 

\(100 = 6\cdot 16 + 4\)

 

Wir erhalten:

\(\begin{array}{rcll} 2^{6\cdot16 + 4}\pmod 7 \\ \equiv & 2^{6\cdot16}\cdot 2^{4}\pmod 7 \\ \equiv & (\underbrace{2^{6}}_{=1})^{16}\cdot 2^{4}\pmod 7 \qquad & | \qquad 2^6 \equiv 1 \pmod 7\\ \equiv & (1)^{16}\cdot 2^{4}\pmod 7 \qquad & | \qquad 1^{16} = 1 \\ \equiv & 1\cdot 2^{4}\pmod 7 \\ \equiv & 2^{4}\pmod 7 \\ \equiv & 16 \pmod 7 \\ \equiv & 2 \pmod 7 \\ \end{array}\)

 

Der gesuchte Rest ist die 2

 

laugh

 02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016
bearbeitet von heureka  02.03.2016

22 Benutzer online

avatar