Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+3

Prove that 3=1+21+31+41+.

 

Source: https://www.quora.com/What-is-the-solution-of-sqrt-1+2-sqrt-1+3-sqrt-1+4-sqrt

 

n(n+2)=n(n+2)2=nn2+4n+4=n1+n2+4n+3=n1+n2+3n+n+3n(n+2)=n1+(n+1)(n+3)f(n)=n(n+2)f(n+1)=(n+1)(n+1+2)f(n+1)=(n+1)(n+3)n(n+2)=n1+(n+1)(n+3)f(n)=n1+f(n+1)f(n+1)=(n+1)1+f(n+1+1)f(n+1)=(n+1)1+f(n+2)f(n)=n1+(n+1)1+f(n+2)f(n+2)=(n+2)1+f(n+2+1)f(n+2)=(n+2)1+f(n+3)f(n)=n1+(n+1)1+(n+2)1+f(n+3)f(n+3)=(n+3)1+f(n+3+1)f(n+3)=(n+3)1+f(n+4)f(n)=n1+(n+1)1+(n+2)1+(n+3)1+f(n+4)|f(n)=n(n+2)n(n+2)=n1+(n+1)1+(n+2)1+(n+3)1+f(n+4)|n=11(1+2)=11+(1+1)1+(1+2)1+(1+3)1+3=1+21+31+41+

 

laugh

02.06.2021
 #1
avatar+26397 
+2

There exist several positive integers x such that
1x2+2x is a terminating decimal.
What is the second smallest such integer?

 

Terminating decimal, if 2,5|x2+2x

 

x2+2x=0(mod2)|+1x2+2x+1=1(mod2)(x+1)2=1(mod2)(x+1)2=1(mod2)x+1=±1(mod2)x+1=+1(mod2)|1x=0(mod2)All even numbers: x=0, 2, 4, 6, x+1=1(mod2)|1x=2(mod2)x=2+2(mod2)x=0(mod2)All even numbers: x=0, 2, 4, 6, 

 

x2+2x=0(mod5)|+1x2+2x+1=1(mod5)(x+1)2=1(mod5)(x+1)2=1(mod5)x+1=±1(mod5)x+1=+1(mod5)|1x=0(mod5)x=0, 5, 10, 15, x+1=1(mod5)|1x=2(mod5)x=2+5(mod5)x=3(mod5)x=3+5n, nZ

 

positive integers x=2, 3, 4, 5, 6, 8, 

The second smallest such integer is 3

 

laugh

02.06.2021
 #3
avatar+26397 
+2

if z is a complex number such that z+1z=3
what is the value of z2010+1z2010?

 

1. |z|= ?

z+1z=3|Let z=a+bia+bi+1a+bi=3a+bi+1(a+bi)(abi)(abi)=3|(a+bi)(abi)=|z|2a+bi+abi|z|2=3a+a|z|2=3+bibi|z|2=0=3bibi|z|2=0bi=bi|z|2|z|2=bibi|z|2=1or|z|=1

 

2. φ= ?

z=|z|eiφ||z|=1z=eiφz=cos(φ)+isin(φ)1z=z1=(|z|eiφ)1=|z|1(eiφ)1=1|z|eiφ(1)=1|z|ei(φ||z|=1=ei(φ=cos(φ)+isin(φ)1z=cos(φ)isin(φ)z+1z=cos(φ)+isin(φ)+cos(φ)isin(φ)z+1z=2cos(φ)|z+1z=33=2cos(φ)cos(φ)=32φ=30

 

3. z2010= ?

z2010=(|z|eiφ)2010=|z|2010(eiφ)2010=12010ei2010φ=ei2010φ=cos(2010φ)+isin(2010φ)|φ=30=cos(201030)+isin(201030)=cos(180)+isin(180)z2010=1

 

4. 1z2010= ?

1z2010=(|z|eiφ)2010=|z|2010(eiφ)2010=12010ei(2010φ)=ei(2010φ)=cos(2010φ)+isin(2010φ)=cos(2010φ)isin(2010φ)|φ=30=cos(201030)isin(201030)=cos(180)isin(180)1z2010=1

 

z2010+1z2010=1+(1)z2010+1z2010=2

 

laugh

01.06.2021