Processing math: 100%
 
+0  
 
0
455
2
avatar

There is a number formed by n copies of 2020 and 1 in the unit place. If this number is divisible by 17, what is the smallest possible value of n?

 May 26, 2021
 #1
avatar+37167 
+1

n = 6 by trial and error .... (  2020 * 6   + 1  ) / 17 = 713

 May 26, 2021
 #2
avatar+26397 
+1

Number Theory

There is a number formed by n copies of 2020 and 1 in the unit place.
If this number is divisible by 17,
what is the smallest possible value of n?


Formula: 2020n+10(mod17)

 

2020n+10(mod17)|202014(mod17)14n+10(mod17)14n1(mod17)n(1)114(mod17)

 

Modular multiplicative inverse using Euler's theorem:

114(mod17)14ϕ(17)1(mod17)|ϕ(17)=1614161(mod17)1415(mod17)|143(mod17)(3)15(mod17)(3)15(mod17)(3)53(mod17)(35)3(mod17)|355(mod17)(5)3(mod17)125(mod17)|125(mod17)6(mod17)114(mod17)6(mod17)

 

n(1)114(mod17)|114(mod17)6(mod17)n(1)(6)(mod17)n6(mod17)n=6+17kkZ

 

The smallest possible value of n is 6

 

laugh

 May 26, 2021

1 Online Users