what two numbers multiply to 394.24 and adds up to 40 ?
\boxed{ \begin{array}{rcl} x_1+x_2 &=& 40 \ \quad x_1*x_2 &=& 394.24 \end{array} }
\small{\text{ set $x^2 - (x_1+x_2)x + x_1*x_2 = 0$ }} $\\$ \small{\text{ than we have $x^2 - 40x + 394.24 = 0$ }} $\\$ \small{\text{ and the solution for $x_1$ and $x_2$ is: $\frac{ -b\pm\sqrt{b^2-4ac} } {2a}$ }} $\\$ \small{\text{ $x_{1,2}=\frac{ 40\pm\sqrt{1600-4*394.24 } } {2} = \frac{ 40\pm\sqrt{23.04} }{2} = \frac{ 40\pm4.8 }{2} $ }} $\\$ \small{\text{ $x_1=\frac{ 40+4.8 }{2} = 22.4 $ }} }} $\\$ \small{\text{ $x_2=\frac{ 40-4.8 }{2} = 17.6$ }}
So
x + y = 40 → y = 40 - x
And
xy = 394.24
And substituting for y in the second equation, we have
x(40 - x) = 394.24 simplify
40x - x^2 = 394.24 multiply everything by 100
4000x - 100x^2 = 39424 rearrange
100x^2 - 4000x + 39424 = 0 this might be a little difficult to factor directly.... using the onsite solver, we have
100×x2−4000×x+39424=0⇒{x=1125x=885}⇒{x=22.4x=17.6}
And there are the two numbers... if x = 22.4, then y = 17.6 .......or vice-versa........I didn't anticipate that we might get a "clean" answer like that !!!
what two numbers multiply to 394.24 and adds up to 40 ?
\boxed{ \begin{array}{rcl} x_1+x_2 &=& 40 \ \quad x_1*x_2 &=& 394.24 \end{array} }
\small{\text{ set $x^2 - (x_1+x_2)x + x_1*x_2 = 0$ }} $\\$ \small{\text{ than we have $x^2 - 40x + 394.24 = 0$ }} $\\$ \small{\text{ and the solution for $x_1$ and $x_2$ is: $\frac{ -b\pm\sqrt{b^2-4ac} } {2a}$ }} $\\$ \small{\text{ $x_{1,2}=\frac{ 40\pm\sqrt{1600-4*394.24 } } {2} = \frac{ 40\pm\sqrt{23.04} }{2} = \frac{ 40\pm4.8 }{2} $ }} $\\$ \small{\text{ $x_1=\frac{ 40+4.8 }{2} = 22.4 $ }} }} $\\$ \small{\text{ $x_2=\frac{ 40-4.8 }{2} = 17.6$ }}