heureka

avatar
Benutzernameheureka
Punkte26367
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26367 
+11

Wie kann ich die Formel:
\(\displaystyle \large{q^1 + q^2 + q^3 +\ldots+ q^n = \dfrac{q^{n+1} - q}{q-1} }\)
durch völlstandige Induktion beweisen ?
für alle \( n \in \mathbb{N}\):

 

\(\bf{\text{Beweise mit vollständiger Induktion:}} \\ \displaystyle q^1 + q^2 + q^3 +\ldots+ q^n = \dfrac{q^{n+1} - q}{q-1} \)

 

\(\text{Induktionsanfang:}\)

\(\begin{array}{|lll|} \hline n=1 & \text{linke Seite:} & q^1 \\ & & =q \\\\ & \text{rechte Seite:} & \dfrac{q^{1+1} - q} {q-1} \\ & &= \dfrac{q^{2} - q} {q-1} \\ & &= \dfrac{q\cdot q - q} {q-1} \\ & &= \dfrac{q\cdot( q - 1)} {q-1} \\ & &= q\cdot \left( \dfrac{q - 1} {q-1} \right) \\ & &= q \\ \hline \end{array}\)

 

\(\text{Für $\mathbf{n=1}$ sind beide Seiten gleich, und die Aussage ist wahr!}\)

 

\(\text{Die Induktionsannahme (I.A.) lautet:}\)

\(\begin{array}{|rcll|} \hline \displaystyle q^1 + q^2 + q^3 +\ldots+ q^n = \dfrac{q^{n+1} - q}{q-1} \\ \hline \end{array}\)

 

\(\text{Der Induktionsschluss von $\mathbf{n}$ nach $\mathbf{n+1}$:}\)

\(\begin{array}{|rcll|} \hline \displaystyle q^1 + q^2 + q^3 +\ldots+ q^n + q^{n+1} &=& \dfrac{q^{(n+1)+1} - q}{q-1} \\ \hline \end{array}\)

 

\(\bf{\text{linke Seite:}}\)

\(\begin{array}{|llrcll|} \hline &\mathbf{ q^1 + q^2 + q^3 +\ldots+ q^n + q^{n+1} }\\\\ \overset{I.A.}{=} & \dfrac{q^{n+1} - q}{q-1} + q^{n+1} \\\\ = & \dfrac{q^{n+1} - q}{q-1} + q^{n+1}\cdot \left(\dfrac{q-1}{q-1}\right) \\\\ = & \dfrac{q^{n+1} - q+ q^{n+1}(q-1)}{q-1} \\\\ = & \dfrac{q^{n+1} - q+ q^{n+2}-q^{n+1} }{q-1} \\\\ = & \dfrac{ - q+ q^{n+2}}{q-1} \\\\ \mathbf{=} & \mathbf{\dfrac{ q^{n+2}- q }{q-1} }\\ \hline \end{array} \)

 

\(\bf{\text{rechte Seite:}}\)

\(\begin{array}{|ll|} \hline & \mathbf{\dfrac{q^{(n+1)+1} - q}{q-1} } \\\\ \mathbf{=}& \mathbf{\dfrac{ q^{n+2}- q }{q-1} }\\ \hline \end{array}\)

 

laugh

08.11.2018
 #2
avatar+26367 
+11

Vollständige Induktion!

Zeigen Sie mit vollständiger Induktion
\(\displaystyle \sum\limits_{k=1}^{n} (-1)^{k-1}\cdot k=\dfrac{1}{4}\left[~1+(-1)^{n-1}\cdot (2n+1)~\right]\)
für alle \(n \in \mathbb{N}\):

 

\(\bf{\text{Beweise mit vollständiger Induktion:}}\)

\(\displaystyle \sum\limits_{k=1}^{n} (-1)^{k-1}\cdot k=\dfrac{1}{4}\left[~1+(-1)^{n-1}\cdot (2n+1)~\right]\)

 

\(\text{Induktionsanfang:}\)

\(\begin{array}{|lll|} \hline n=1 & \text{linke Seite:} & (-1)^{1-1}\cdot 1 \\ & &= 1 \\\\ & \text{rechte Seite:} & \dfrac{1}{4}[~1+(-1)^{1-1}\cdot (2\cdot 1+1)~] \\ & &= \dfrac{1}{4}[~1+1\cdot 3~] \\ & &= \dfrac{1}{4}\cdot(4) \\ & &= 1 \\ \hline \end{array} \)

 

\(\text{Für $\mathbf{n=1}$ sind beide Seiten gleich, und die Aussage ist wahr!}\)

 

\(\text{Die Induktionsannahme (I.A.) lautet:}\)

\(\begin{array}{|rcll|} \hline \displaystyle \sum\limits_{k=1}^{n} (-1)^{k-1}\cdot k &=& \dfrac{1}{4}\left[~1+(-1)^{n-1}\cdot (2n+1)~\right] \\ \hline \end{array}\)

 

\(\text{Der Induktionsschluss von $\mathbf{n}$ nach $\mathbf{n+1}$:}\)

\(\begin{array}{|rcll|} \hline \displaystyle \sum\limits_{k=1}^{n+1} (-1)^{k-1}\cdot k &=& \dfrac{1}{4}\left[~1+(-1)^{(n+1)-1}\cdot (2(n+1)+1)~\right] \\ \hline \end{array}\)

 

\(\bf{\text{linke Seite:}}\)

\(\begin{array}{|llrcll|} \hline &\mathbf{ \sum\limits_{k=1}^{n+1} (-1)^{k-1}\cdot k }\\\\ = & \sum\limits_{k}^{n} (-1)^{k-1}\cdot k + (-1)^{(n+1)-1}(n+1) \\\\ = & \sum\limits_{k}^{n} (-1)^{k-1}\cdot k + (-1)^{n}(n+1) \\\\ \overset{I.A.}{=} & \dfrac{1}{4}\left[~1+(-1)^{n-1}\cdot (2n+1)~\right] + (-1)^{n}(n+1) \\\\ = & \dfrac{1}{4}\left[~1+(-1)^{n-1}\cdot (2n+1)~\right] + (-1)^{n}(n+1) \cdot \dfrac{4}{4} \\\\ = & \dfrac{1}{4}\left[~1+\dfrac{(-1)^{n}}{-1}\cdot (2n+1)+ 4\cdot(-1)^{n}(n+1) ~\right] \\\\ = & \dfrac{1}{4}\left[~1- (-1)^{n}\cdot (2n+1)+ 4\cdot(-1)^{n}(n+1) ~\right] \\\\ = & \dfrac{1}{4}\left\{~1 +(-1)^n\cdot[~ 4(n+1)-(2n+1)~] ~\right\} \\\\ = & \dfrac{1}{4}\left[~1 +(-1)^n\cdot (4n+4-2n-1)~\right] \\\\ \mathbf{=} & \mathbf{\dfrac{1}{4}\left[~1 +(-1)^n\cdot(~ 2n+3) ~\right] }\\ \hline \end{array}\)

 

\(\bf{\text{rechte Seite:}} \)

\(\begin{array}{|ll|} \hline & \mathbf{\dfrac{1}{4}\left[~1+(-1)^{(n+1)-1}\cdot (2(n+1)+1)~\right] } \\\\ =& \dfrac{1}{4}\left[~1+(-1)^{n}\cdot (2n+2+1)~\right] \\\\ \mathbf{=}& \mathbf{\dfrac{1}{4}\left[~1+(-1)^{n}\cdot (2n+3)~\right]} \\ \hline \end{array}\)

 

laugh

25.10.2018