heureka

avatar
Benutzernameheureka
Punkte26367
Membership
Stats
Fragen 17
Antworten 5678

 #10
avatar+26367 
+12

What is the largest integer less than 2018 that cannot be written as a sum of two or more consecutive integers?

 

Two or more consecutive integers:

\(\small{ \begin{array}{|r|r|r|l|} \hline \text{consecutive} \\ \text{integers} \\ \hline 2 & n+(n+1) & = 2n + 1 & \text{all odd numbers} \\ \hline 3 & (n-1) + n + (n+1) & = 3n & \text{all multiples of}~3 \\ \hline 4 & (n-1) + n + (n+1)+(n+2) & = 2(2n+1) & \text{all odd numbers} \times 2 \\ \hline 5 & (n-2)+(n-1) + n + (n+1)+(n+2) & = 5n & \text{all multiples of}~5 \\ \hline 6 & & = 3(2n+1) & \text{all odd numbers} \times 3 \\ \hline 7 & & = 7n & \text{all multiples of}~7 \\ \hline 8 & & = 4(2n+1) & \text{all odd numbers} \times 4 \\ \hline 9 & & = 9n & \text{all multiples of}~9 \\ \hline 10 & & = 5(2n+1) & \text{all odd numbers} \times 5 \\ \hline 11 & & = 11n & \text{all multiples of}~11 \\ \hline 12 & & = 6(2n+1) & \text{all odd numbers} \times 6 \\ \hline \ldots & \\ \hline \end{array} }\)

 

Numbers can be written as a sum of two or more consecutive integers:

\(\begin{array}{|l|} \hline \text{Rule $1$: All odd numbers without $1$ }\\ \text{Rule $2$: All multiples of an odd number without $1$ }\\ \text{Rule $3$: All odd numbers $\times$ an even number without $1$ }\\\\ \text{In general all multiples of an odd number can be written }\\ \text{as sum of two or more consecutive integers (without 1)} \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rcll|} \hline 3 & 5 & 7 & 9 & 11 & 13 & 15 & \ldots \\ 6 & 10 & 14 & 18 & 22 & 26 & 30 & \ldots \\ 9 & 15 & 21 & 27 & 33 & 39 & 41 & \ldots \\ 12 & 20 & 28 & 36 & 44 & 52 & 60 & \ldots \\ 15 & 25 & 35 & 45 & 55 & 65 & 75 & \ldots \\ 18 & 30 & 42 & 54 & 66 & 78 & 90 & \ldots \\ 21 & 35 & 49 & 64 & 77 & 91 &105 & \ldots \\ 24 & 40 & 56 & 72 & 99 &104 &120 & \ldots \\ \ldots &\ldots &\ldots &\ldots &\ldots &\ldots &\ldots &\ldots \\ \hline \end{array}\)

 

So all numbers without an odd prime number in their factorisation cannot be written

as a sum of two or more consecutive integers also the number 1.

 

laugh

21.11.2018
 #3
avatar+26367 
+11
21.11.2018
 #1
avatar+26367 
+10

In a trapezoid $ABCD$ with $AB$ parallel to $CD$, the diagonals $AC$ and $BD$ intersect at $E$.

If the area of triangle $ABE$ is 50 square units, and the area of triangle$ADE$ is 20 square units,

what is the area of trapezoid $ABCD$?

 

\(\text{Let Area $A_1=[ADE] = 20 $}\\ \text{Let Area $A_2=[ABE] = 50 $}\\ \text{Let Area $A_3=[DEC] $}\\ \text{Let Area $A_4=[BEC] $}\\ \text{Let Area $A_5=[ADC] $}\\ \text{Let Area $A_6=[BDC] $}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_2}{A_1} &=& \dfrac{50}{20} \\ &=& \dfrac52 \\\\ \hline A_1 &=& \dfrac{DE\cdot AH}{2} \\\\ A_2 &=& \dfrac{BE\cdot AH}{2} \\\\ A_3 &=& \dfrac{DE\cdot CK}{2} \\\\ A_4 &=& \dfrac{BE\cdot CK}{2} \\ \hline \\ \dfrac{A_2}{A_1} &=& \dfrac{\dfrac{BE\cdot AH}{2}}{\dfrac{DE\cdot AH}{2}} \\\\ &=& \dfrac{BE\cdot AH}{DE\cdot AH} \\\\ \dfrac{A_2}{A_1} &=& \dfrac{BE}{DE} \quad & | \quad \dfrac{A_2}{A_1} = \dfrac52 \\\\ \mathbf{\dfrac52} & \mathbf{=}& \mathbf{\dfrac{BE}{DE}} \\\\ \hline \dfrac{A_4}{A_3} &=& \dfrac{\dfrac{BE\cdot CK}{2}}{\dfrac{DE\cdot CK}{2}} \\\\ &=& \dfrac{BE\cdot CK}{DE\cdot CK} \\\\ \dfrac{A_4}{A_3} &=& \dfrac{BE}{DE} \quad & | \quad \dfrac{BE}{DE} = \dfrac52 \\\\ \mathbf{\dfrac{A_4}{A_3}} &\mathbf{=}& \mathbf{\dfrac52} \qquad \text{or} \qquad \mathbf{A_3 = \dfrac{2}{5}\cdot A_4 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline AM &=& BN \\ \hline \\ A_5 &=& \dfrac{DC\cdot AM}{2} \\\\ A_6 &=& \dfrac{DC\cdot BN}{2} \\ \hline \\ \dfrac{A_5}{A_6} &=& \dfrac{\dfrac{DC\cdot AM}{2}}{\dfrac{DC\cdot BN}{2}} \\\\ &=& \dfrac{DC\cdot AM}{DC\cdot BN} \quad & | \quad AM=BN \\\\ &=& \dfrac{DC\cdot BN}{DC\cdot BN} \\\\ \dfrac{A_5}{A_6} &=& 1 \\\\ \mathbf{ A_5 } & \mathbf{=} & \mathbf{A_6} \quad & | \quad A_5 = A_1+A_3,\quad A_6 =A_4+A_3 \\ A_1+A_3 &=& A_4+A_3 \quad & | \ -A_3\\ A_1 &=& A_4 \quad & | \quad A_1 = 20\\ \mathbf{20} & \mathbf{=}& \mathbf{ A_4 } \\ \hline \\ \mathbf{A_3} & \mathbf{=} & \mathbf{ \dfrac{2}{5}\cdot A_4 } \quad | \quad A_4 = 20 \\ A_3 &=& \dfrac{2}{5}\cdot 20 \\ \mathbf{A_3} & \mathbf{=} & \mathbf{ 8 } \\ \hline \end{array}\)

 

\(\text{The area of trapezoid $ABCD = A_1+A_2+A_3+A_4 = 20+50+8+20=\mathbf{98}$ }\)

 

laugh

20.11.2018