Integrate the following: ∫x^2 sin^3 (x) dx. Also, please show steps of solution.
I thank you for any help.
Formula sin3(x):
sin(3x)=sin(2x+x)=sin(2x)⏟=2sin(x)cos(x)⋅cos(x)+cos(2x)⏟=cos2(x)−sin2(x)⋅sin(x)=2sin(x)cos2(x)+cos2(x)sin(x)−sin3(x)=3sin(x)cos2(x)−sin3(x)=3sin(x)(1−sin2(x))−sin3(x)=3sin(x)−3sin3(x)−sin3(x)sin(3x)=3sin(x)−4sin3(x)4sin3(x)=3sin(x)−sin(3x)sin3(x)=14(3sin(x)−sin(3x))
Double Integration by parts:
∫u⋅v′=u⋅∫v′−∫(u′⋅∫v′)|Integrate by parts∫(u′⋅∫v′)=u′⋅∬v′−∫(u″⋅∬v′)|Integrate by parts∫u⋅v′=u⋅∫v′−(u′⋅∬v′−∫(u″⋅∬v′))∫u⋅v′=u⋅∫v′−u′⋅∬v′+∫(u″⋅∬v′)
∫x2sin3(x) dxu=x2u′=2xu″=2v′=sin3(x)∫u⋅v′=u⋅∫v′−u′⋅∬v′+∫(u″⋅∬v′)∫x2⋅sin3(x)=x2⋅∫sin3(x)−2x⋅∬sin3(x)+2⋅∭sin3(x)
∫sin3(x) dx
∫sin3(x)=14(∫3sin(x)−∫sin(3x))∫sin3(x)=14(−3cos(x)+13cos(3x))
∬sin3(x) dx
∬sin3(x)=14(∫−3cos(x)+∫13cos(3x))∬sin3(x)=14(−3sin(x)+19sin(3x))
∭sin3(x) dx
∭sin3(x)=14(∫−3sin(x)+∫19sin(3x))∭sin3(x)=14(3cos(x)−127cos(3x))
∫x2⋅sin3(x)=x2⋅∫sin3(x)−2x⋅∬sin3(x)+2⋅∭sin3(x)∫x2⋅sin3(x)=x2⋅14[−3cos(x)+13cos(3x)]−2x⋅14[−3sin(x)+19sin(3x)]+2⋅14[3cos(x)−127cos(3x)]∫x2⋅sin3(x)=14x2[−3cos(x)+13cos(3x)]−12x[−3sin(x)+19sin(3x)]+12[3cos(x)−127cos(3x)]
