heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #11
avatar+26387 
+2

Integrate the following:  ∫x^2 sin^3 (x) dx. Also, please show steps of solution.

I thank you for any help.

 

Formula \(\sin^3(x)\):

\(\begin{array}{|rcll|} \hline \sin(3x) &=& \sin(2x+x) \\ &=& \underbrace{ \sin(2x) }_{=2\sin(x)\cos(x)}\cdot \cos(x)+\underbrace{ \cos(2x) }_{=\cos^2(x)-\sin^2(x)}\cdot \sin(x) \\ &=& 2\sin(x)\cos^2(x) + \cos^2(x)\sin(x)-\sin^3(x) \\ &=& 3\sin(x)\cos^2(x) -\sin^3(x) \\ &=& 3\sin(x) \Big( 1-\sin^2(x) \Big) -\sin^3(x) \\ &=& 3\sin(x) -3\sin^3(x) -\sin^3(x) \\ \sin(3x)&=& 3\sin(x) -4\sin^3(x) \\\\ 4\sin^3(x) &=& 3\sin(x) - \sin(3x) \\ \mathbf{ \sin^3(x) } & \mathbf{=} & \mathbf{ \frac14 \Big( 3\sin(x) - \sin(3x) \Big) } \\ \hline \end{array}\)

 

Double Integration by parts:

\(\begin{array}{|rcll|} \hline \int u\cdot v' &=& u\cdot \int v' - \int (u'\cdot \int v') \quad & | \quad \text{Integrate by parts}\\ \int (u'\cdot \int v') &=& u'\cdot \iint v' - \int (u''\cdot \iint v') \quad & | \quad \text{Integrate by parts} \\\\ \int u\cdot v' &=& u\cdot \int v' - \Big( u'\cdot \iint v' - \int (u''\cdot \iint v') \Big) \\ \mathbf{ \int u\cdot v' } & \mathbf{=} & \mathbf{ u\cdot \int v' - u'\cdot \iint v' + \int (u''\cdot \iint v') } \\ \hline \end{array} \)

 

\(\begin{array}{|llll|} \hline \int x^2 \sin^3 (x)\ dx \qquad & u = x^2 \qquad u' = 2x \qquad u'' = 2 \\ \qquad & v' = sin^3(x)\\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \mathbf{ \int u\cdot v' } & \mathbf{=} & \mathbf{ u\cdot \int v' - u'\cdot \iint v' + \int (u''\cdot \iint v') } \\ \int x^2\cdot sin^3 (x) &=& x^2\cdot \int sin^3(x) - 2x\cdot \iint sin^3(x) + 2\cdot \iiint sin^3(x) \\ \hline \end{array} \)

 

 

\(\int \sin^3(x)\ dx\)

\(\begin{array}{|rcll|} \hline \int \sin^3(x) &=& \frac14 \Big( \int 3\sin(x)-\int \sin(3x) \Big) \\ \int \sin^3(x) &=& \frac14 \Big( -3\cos(x)+\frac13 \cos(3x) \Big) \\ \hline \end{array}\)

 

\(\iint \sin^3(x)\ dx\)

\(\begin{array}{|rcll|} \hline \iint \sin^3(x) &=& \frac14 \Big(\int -3\cos(x)+ \int \frac13 \cos(3x) \Big) \\ \iint \sin^3(x) &=& \frac14 \Big( -3\sin(x)+\frac19 \sin(3x) \Big) \\ \hline \end{array} \)

 

\(\iiint \sin^3(x)\ dx\)

\(\begin{array}{|rcll|} \hline \iiint \sin^3(x) &=& \frac14 \Big(\int -3\sin(x)+ \int \frac19 \sin(3x) \Big) \\ \iiint \sin^3(x) &=& \frac14 \Big( 3\cos(x)-\frac{1}{27} \cos(3x) \Big) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{ \int x^2\cdot \sin^3 (x) } & \mathbf{=} & \mathbf{ x^2\cdot \int sin^3(x) - 2x\cdot \iint sin^3(x) + 2\cdot \iiint sin^3(x) } \\ \int x^2\cdot \sin^3 (x) &=& x^2\cdot \frac14 \Big[ -3\cos(x)+\frac13 \cos(3x) \Big] - 2x\cdot \frac14 \Big[ -3\sin(x)+\frac19 \sin(3x) \Big] + 2\cdot \frac14 \Big[ 3\cos(x)-\frac{1}{27} \cos(3x) \Big] \\ \int x^2\cdot \sin^3 (x) &=& \frac14 x^2 \Big[ -3\cos(x)+\frac13 \cos(3x) \Big] - \frac12 x\Big[ -3\sin(x)+\frac19 \sin(3x) \Big] + \frac12 \Big[ 3\cos(x)-\frac{1}{27} \cos(3x) \Big] \\ \hline \end{array} \)

 

laugh

04.04.2017
 #5
avatar+26387 
+2

My proffesor gave me this to problem to resolve it, but I really do not know how to do this 

8444...4...455= divisible to 19

Between the 8 and the two 5 are 2017 fours

 

8444...4...455 is divisible to 19, if 8444...4...455 modulo 19 = 0

 

  • We calculate 8444...4...455 modulo 19:
    We divide 8444...4...455 in parts of 3-digits. ( The partition is arbitrary ).
    But the first part is 8444.

So the Number is:

\(\begin{array}{lcll} \underbrace{8444}_{\text{ Fist Part }}\ \underbrace{444}_{\text{ Second Part }}\ 444\ 444\ 444\ 444\ 444\ 444\ 444\ \ldots \underbrace{444}_{\text{ Part 672 }} \ \underbrace{455}_{\text{ Last Part }} \qquad \text{2017 fours} \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \text{first part} \pmod {19} \\ &\equiv& 8444\pmod {19}\\ &=& \color{red}8 \color{black}\qquad (8444=444\cdot 19 + \color{red}8 \color{black}) \\\\ && \text{The last remainder } = \color{red}8 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \text{Second part} \pmod {19} \\ &\equiv& \underbrace{8}_{\text{ The last remainder }}\underbrace{444}_{\text{ Second part }}\pmod {19}\\ &=& \color{red}8 \color{black}\qquad (8444=444\cdot 19 + \color{red}8 \color{black}) \\\\ && \text{The new last remainder } = 8 \\ \hline \end{array} \)

 

\(\cdots \)

 

\(\begin{array}{|rcll|} \hline && \text{Part 672} \pmod {19} \\ &\equiv& \underbrace{8}_{\text{ The last remainder }}\underbrace{444}_{\text{ Part 672 }}\pmod {19}\\ &=& \color{red}8 \color{black}\qquad (8444=444\cdot 19 + \color{red}8 \color{black}) \\\\ && \text{The new last remainder } = 8 \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline && \text{Last part} \pmod {19} \\ &\equiv& \underbrace{8}_{\text{ The last remainder }}\underbrace{455}_{\text{ Last part }}\pmod {19}\\ &=& \color{red}0 \color{black}\qquad (8455=445\cdot 19 + \color{red}0 \color{black}) \\\\ && \text{The new last remainder } = 0 \\ \hline \end{array} \)

 

8444...4...455 is divisible to 19, because 8444...4...455 modulo 19 = 0

 

laugh

03.04.2017
 #5
avatar+26387 
+3

Let x1(t) and x2 (t) be functions that represent the horizontal displacement of two simple pendulums from their central position at time t in seconds.

If both pendulums start at the same displacement at time t= 0,

at what time are they both next at the same displacement?

 

 

WolframAlpha (Real Solutions) :

\(\begin{array}{|l|rcll|} \hline x(t)=0 & t &=& 80\cdot c_1 \quad & | \quad c_1 \in \mathbb{Z} \\ & t &=& 40\cdot(2c_1-\frac12) \quad & | \quad c_1 \in \mathbb{Z} \\ & t &=& 40\cdot(2c_1+\frac12) \quad & | \quad c_1 \in \mathbb{Z} \\ & t &=& 40\cdot(2c_1+1) \quad & | \quad c_1 \in \mathbb{Z} \\ \hline \end{array}\)

\(\begin{array}{|l|rcll|} \hline x(t)\ne 0 & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 -2\cdot \arctan(\sqrt{0.1928427661680941676676430}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 -0.8275700335453974790842315\ldots ) \\\\ & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 +2\cdot \arctan(\sqrt{0.1928427661680941676676430}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 +0.8275700335453974790842315\ldots ) \\\\ & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 -2\cdot \arctan(\sqrt{1.102624388267996959021457}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 -1.6196234867202913859018615\ldots ) \\\\ & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 +2\cdot \arctan(\sqrt{1.102624388267996959021457}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 +1.6196234867202913859018615\ldots ) \\\\ & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 -2\cdot \arctan(\sqrt{6.348976379766929903229600}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 -2.3859824690979305397688904\ldots ) \\\\ & t &=& \frac{20}{\pi} \cdot \Big( 2\pi c_1 +2\cdot \arctan(\sqrt{6.348976379766929903229600}) \Big) \quad & | \quad c_1 \in \mathbb{Z} \\ & &=& \frac{20}{\pi} \cdot ( 2\pi c_1 +2.3859824690979305397688904\ldots ) \\\\ \hline \end{array} \)

 

WolframAlpha:

 

laugh

30.03.2017