Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #11
avatar+26397 
+2

Integrate the following:  ∫x^2 sin^3 (x) dx. Also, please show steps of solution.

I thank you for any help.

 

Formula sin3(x):

sin(3x)=sin(2x+x)=sin(2x)=2sin(x)cos(x)cos(x)+cos(2x)=cos2(x)sin2(x)sin(x)=2sin(x)cos2(x)+cos2(x)sin(x)sin3(x)=3sin(x)cos2(x)sin3(x)=3sin(x)(1sin2(x))sin3(x)=3sin(x)3sin3(x)sin3(x)sin(3x)=3sin(x)4sin3(x)4sin3(x)=3sin(x)sin(3x)sin3(x)=14(3sin(x)sin(3x))

 

Double Integration by parts:

uv=uv(uv)|Integrate by parts(uv)=uv(uv)|Integrate by partsuv=uv(uv(uv))uv=uvuv+(uv)

 

x2sin3(x) dxu=x2u=2xu=2v=sin3(x)uv=uvuv+(uv)x2sin3(x)=x2sin3(x)2xsin3(x)+2sin3(x)

 

 

sin3(x) dx

sin3(x)=14(3sin(x)sin(3x))sin3(x)=14(3cos(x)+13cos(3x))

 

sin3(x) dx

sin3(x)=14(3cos(x)+13cos(3x))sin3(x)=14(3sin(x)+19sin(3x))

 

sin3(x) dx

sin3(x)=14(3sin(x)+19sin(3x))sin3(x)=14(3cos(x)127cos(3x))

 

x2sin3(x)=x2sin3(x)2xsin3(x)+2sin3(x)x2sin3(x)=x214[3cos(x)+13cos(3x)]2x14[3sin(x)+19sin(3x)]+214[3cos(x)127cos(3x)]x2sin3(x)=14x2[3cos(x)+13cos(3x)]12x[3sin(x)+19sin(3x)]+12[3cos(x)127cos(3x)]

 

laugh

04.04.2017
 #5
avatar+26397 
+2

My proffesor gave me this to problem to resolve it, but I really do not know how to do this 

8444...4...455= divisible to 19

Between the 8 and the two 5 are 2017 fours

 

8444...4...455 is divisible to 19, if 8444...4...455 modulo 19 = 0

 

  • We calculate 8444...4...455 modulo 19:
    We divide 8444...4...455 in parts of 3-digits. ( The partition is arbitrary ).
    But the first part is 8444.

So the Number is:

8444 Fist Part  444 Second Part  444 444 444 444 444 444 444 444 Part 672  455 Last Part 2017 fours

 

first part(mod19)8444(mod19)=8(8444=44419+8)The last remainder =8

 

Second part(mod19)8 The last remainder 444 Second part (mod19)=8(8444=44419+8)The new last remainder =8

 

 

Part 672(mod19)8 The last remainder 444 Part 672 (mod19)=8(8444=44419+8)The new last remainder =8

Last part(mod19)8 The last remainder 455 Last part (mod19)=0(8455=44519+0)The new last remainder =0

 

8444...4...455 is divisible to 19, because 8444...4...455 modulo 19 = 0

 

laugh

03.04.2017
 #6
avatar+26397 
0

n=5*(10!)

no of zeros does n end with?

 

Legendre's Theorem - The Prime Factorization of Factorials

In mathematics,

Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial 

n!

 

1. The exponent of 2x

We calculate 10 in base 2:

1010=10102

The sum of the digits in base 2 is 1+0+1+0=2

The exponent is: x=10(sum of the standard base-2 digits of 10)21x=1022x=4

 

 

2. The exponent of 5x

We calculate 10 in base 5:

1010=205

The sum of the digits in base 5 is 2+0=2

The exponent is: x=10(sum of the standard base-5 digits of 10)51x=1024x=2

 

 

10!=2452n=510!=2453

 

Number of zeros does n end with ?:

2453=23532=(25)32=2103

 

n ends with 3 zeros.

 

laugh

03.04.2017
 #5
avatar+26397 
+3

Let x1(t) and x2 (t) be functions that represent the horizontal displacement of two simple pendulums from their central position at time t in seconds.

If both pendulums start at the same displacement at time t= 0,

at what time are they both next at the same displacement?

 

 

WolframAlpha (Real Solutions) :

x(t)=0t=80c1|c1Zt=40(2c112)|c1Zt=40(2c1+12)|c1Zt=40(2c1+1)|c1Z

x(t)0t=20π(2πc12arctan(0.1928427661680941676676430))|c1Z=20π(2πc10.8275700335453974790842315)t=20π(2πc1+2arctan(0.1928427661680941676676430))|c1Z=20π(2πc1+0.8275700335453974790842315)t=20π(2πc12arctan(1.102624388267996959021457))|c1Z=20π(2πc11.6196234867202913859018615)t=20π(2πc1+2arctan(1.102624388267996959021457))|c1Z=20π(2πc1+1.6196234867202913859018615)t=20π(2πc12arctan(6.348976379766929903229600))|c1Z=20π(2πc12.3859824690979305397688904)t=20π(2πc1+2arctan(6.348976379766929903229600))|c1Z=20π(2πc1+2.3859824690979305397688904)

 

WolframAlpha:

 

laugh

30.03.2017