Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+6

A circle of radius 5 with its center at (0,0) is drawn on a Cartesian coordinate system.

How many lattice points (points with integer coordinates) lie within or on this circle?

 

Let K the circle with center (0,0)

Letthe radius of the circle.

 

Let g(r) are the lattice points lie within or on this circle. [ g(r):=|(x,y)Z2|x2+y2r2| ]

 

We have four subsets A, B, C, and D with g(r) = A+B+C+D

  • A = {(0,0)} = 1   
  • B = Cut K with axis without (0,0) =2r+2r=4r 
  • C1,C2,C3,C4= squares parallel to the axis with one corner in (0,0) and edge length r2   
    =4([r2])2   with [x]= greatest integer number   
  •  D = remain

Subset D:

For D there is no Formula in close form, but though we have:

D8=[r2a2]+[r2(a+1)2]++[r2(r1)2] with a=[r2]+1  and 

[x]=  greatest integer number

 

g(5) = ?

A=1B=45=20C=94|[r2]=[52]=3=36D=8([5242])|a=[52]+1=3+1=4r1=51=4=8([2516])=8([9])=8[3]=83=24

 

g(5)=A+B+C+D=1+20+36+24=81

 

There are 81 lattice points.

 

Source: http://www.matheprisma.uni-wuppertal.de/Module/PIXXL/Worksheet/ws.pdf

 

laugh

15.03.2017