*Find the equation of the tangent to the circle above that passes through the beginning of axis O (0,0)
1. Center and radius of the circle:
x2+y2−6x−2y+8=0x2−6x+y2−2y=−8(x−62)2−32+(y−22)2−1=−8(x−3)2+(y−1)2=9+1−8(x−3)2+(y−1)2=2Center=C(3,1)Radius r=√2
OC=√x2c+y2c=√32+12=√10
tan(α)=ycxc=13tan(β)=r√OC2−r2=√2√10−2=12
2. Tangent above slope m:
m=tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)m=13+121−13⋅12m=1y=mx+b|m=1b=0y=x
3. Tangent below slope m:
m=tan(α−β)=tan(α)+tan(β)1+tan(α)tan(β)m=13−121+13⋅12m=−17y=mx+b|m=−17b=0y=−17⋅x
