Calculation of the Number of Lattice Points in the Circle
Let r be the Radius of the Circle
Let x=r2
Let A2(x) be the number of lattice points in circle
Let […] be the largest integer
Noted by Gauss:
A2(x)=1+4⋅[ √x ]+4⋅[ √x2 ]2+[ √x ]∑y1=[ √x2 ]+1[ √x−y21 ]
Computed Results
r=√xA2(x)1521332944958161137149819792531031711377124411352914613157091679717901181009191129201257211373221517231653241793251961262121272289282453292629302821313001323209333409343625353853364053374293384513394777405025415261425525435789446077456361466625476921487213497525
Continued
r=√xA2(x)507845518173528497538809549145559477569845571018958105575910913601128961116816212061631245364128536513273661367367140736814505691494970153737115813721624173167297417193751766576181257718605781910979195778020081812059382211018321629842213385227018623217872376988243138924845902544591259979226565932714594277299528345962891797295259830149993075710031417
Source: http://http://www.ams.org/journals/mcom/1962-16-079/S0025-5718-1962-0155788-9/S0025-5718-1962-0155788-9.pdf