simplify tan[ 2*arccos(x/3) ]
cos(φ)=x3φ=arccos(x3)
tan(2φ)=sin(2φ)cos(2φ)|sin(2φ)=2sin(φ)cos(φ)cos(2 φ)=2cos2(φ)−1tan(2φ)=2sin(φ)cos(φ)2cos2(φ)−1|cos(φ)=x3tan(2φ)=2sin(φ)x32(x3)2−1|sin(φ)=sin(arccos(x3))tan(2φ)=2sin(arccos(x3))x32(x3)2−1
tan(2φ)=2sin(arccos(x3))x32(x3)2−1|sin(arccos(x3))=√1−(x3)2tan(2φ)=2√1−(x3)2x32(x3)2−1tan(2φ)=2√9−x29x32x2−99tan(2φ)=2√9−x23x32x2−99tan(2φ)=2√9−x29x2x2−99tan(2φ)=2√9−x2x2x2−9|√9−x2=√3−x⋅√3+xtan(2φ)=2√3−x⋅x⋅√3+x2x2−9tan(2arccos(x3))=2√3−x⋅x⋅√3+x2x2−9