heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #9
avatar+26387 
0

The same answer.

Using the same formula: \(\sin(\varphi) = 2\cdot \sin{ \frac{\varphi}{2} } \cdot \cos{ \frac{\varphi}{2} } \)

 

Given \(\sin ( \frac{\pi } {10}) = \frac{( -1 + \sqrt{ 5}) }{4} \)

Find \(\sin( \frac{\pi } {5})\)

 

Formula:
\(\begin{array}{|rcll|} \hline \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \cos{ \frac{\varphi}{2} } \\ \cos{\frac{\varphi}{2}} &=& \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\\\ \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\ \hline \end{array}\)

 

We set:

\(\begin{array}{|rcll|} \hline \sin{\varphi} &=& \sin( \frac{\pi } {5})\\\\ \sin{\frac{ \varphi } {2} } &=& \sin( \frac{\pi } {10})\\ &=& \frac{ \sqrt{ 5}-1 }{4} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\ \sin( \frac{\pi } {5}) &=& 2\cdot \frac{ \sqrt{ 5}-1 }{4} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (\sqrt{5}-1)^2 }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (5-2\sqrt{5}+1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- 5+2\sqrt{5}-1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{10+2\sqrt{5} }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2 }{4} \cdot \frac{(10+2\sqrt{5}) }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (5-2\sqrt{5}+1)\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 60+12\sqrt{5}-20\sqrt{5}-4\cdot 5 } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 40-8\sqrt{5} } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 8\cdot 5-8\sqrt{5} } {8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{8\cdot 5}{8\cdot 8} -\frac{8\sqrt{5}}{8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{5}{8} -\frac{\sqrt{5}}{8} }\\ \hline \end{array} \)

 

laugh

24.11.2016
 #7
avatar+26387 
+5

Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)

 

Also the problem says that given \(\sin ( \frac{\pi } {10}) = \frac{( -1 + \sqrt{ 5}) }{4}\), find \(\sin ( \frac{\pi } {5})\)

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \cos{\varphi} \\ \cos{\varphi} &=& \sqrt{1-\sin^2{\varphi}} \\\\ \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \sqrt{1-\sin^2{\varphi}} \\ \hline \end{array}\)

 

We set:

\(\begin{array}{|rcll|} \hline \sin{2\varphi} &=& \sin( \frac{\pi } {5})\\\\ \sin{\varphi} &=& \sin( \frac{\pi } {10})\\ &=& \frac{ \sqrt{ 5}-1 }{4} \\ \hline \end{array} \)

 

We have:

\(\begin{array}{|rcll|} \hline \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \sqrt{1-\sin^2{\varphi}} \\ \sin( \frac{\pi } {5}) &=& 2\cdot \frac{ \sqrt{ 5}-1 }{4} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (\sqrt{5}-1)^2 }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (5-2\sqrt{5}+1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- 5+2\sqrt{5}-1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{10+2\sqrt{5} }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2 }{4} \cdot \frac{(10+2\sqrt{5}) }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (5-2\sqrt{5}+1)\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 60+12\sqrt{5}-20\sqrt{5}-4\cdot 5 } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 40-8\sqrt{5} } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 8\cdot 5-8\sqrt{5} } {8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{8\cdot 5}{8\cdot 8} -\frac{8\sqrt{5}}{8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{5}{8} -\frac{\sqrt{5}}{8} }\\ \hline \end{array} \)

 

laugh

23.11.2016
 #4
avatar+26387 
+10

what is the exact value of sin (pi/5) ?

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(5\varphi) = 16 \sin^5(\varphi) - 20 \sin^3(\varphi) + 5\sin(\varphi) \\ \hline \end{array}\)

 

Ansatz:

\(\small{ \begin{array}{|lrcl|} \hline (1): & \sin(360^{\circ}) = 0 = \sin(5\cdot 72^{\circ}) = 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ})\\ & 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ}) &=& 0 \quad & | \quad : \sin(72^{\circ}) \\ & 16 \sin^4(72^{\circ}) - 20 \sin^2(72^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(72^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\\\ (2): & \sin(180^{\circ}) = 0 = \sin(5\cdot 36^{\circ}) = 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) \\ & 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) &=& 0 \quad & | \quad : \sin(36^{\circ}) \\ & 16 \sin^4(36^{\circ}) - 20 \sin^2(36^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(36^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\ \hline \end{array} }\)

 

The quadratic polynomial \(16 x^2 - 20 x + 5\) has following roots: \(<~ \sin^2(72^{\circ}),\ \sin^2(36^{\circ}) ~>\)

 

The general quadratic equation is: \( {\displaystyle ax^{2}+bx+c=0.}\)


The quadratic formula is: \({\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}.}\)

 

\(\begin{array}{|rcll|} \hline x &=& \displaystyle { \frac {20\pm {\sqrt {20^{2}-4\cdot 16 \cdot 5}}}{2\cdot 16}} \\\\ &=& \frac {20\pm {\sqrt { 400 - 320 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 80 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 16\cdot 5 }}} {32} \\\\ &=& \frac {20\pm 4 {\sqrt { 5 } }} {32} \\\\ &=& \frac {5\pm {\sqrt { 5 } }} {8} \\\\ \sqrt{x} &=& \sqrt{ \frac {5\pm {\sqrt { 5 } }} {8} } \\ \hline \end{array} \)

 

Because \(\sin(72^{\circ}) > \sin(36^{\circ})\)
we have:

\(\begin{array}{|rcll|} \hline \sin(72^{\circ}) = \sqrt{ \frac {5 + {\sqrt { 5 } }} {8} } \\ \sin(36^{\circ}) = \sqrt{ \frac {5 - {\sqrt { 5 } }} {8} } \\ \hline \end{array}\)

 

laugh

23.11.2016