what is the exact value of sin (pi/5) ?
Formula:
sin(5φ)=16sin5(φ)−20sin3(φ)+5sin(φ)
Ansatz:
(1):sin(360∘)=0=sin(5⋅72∘)=16sin5(72∘)−20sin3(72∘)+5sin(72∘)16sin5(72∘)−20sin3(72∘)+5sin(72∘)=0|:sin(72∘)16sin4(72∘)−20sin2(72∘)+5=0|x=sin2(72∘)16x2−20x+5=0(2):sin(180∘)=0=sin(5⋅36∘)=16sin5(36∘)−20sin3(36∘)+5sin(36∘)16sin5(36∘)−20sin3(36∘)+5sin(36∘)=0|:sin(36∘)16sin4(36∘)−20sin2(36∘)+5=0|x=sin2(36∘)16x2−20x+5=0
The quadratic polynomial 16x2−20x+5 has following roots: < sin2(72∘), sin2(36∘) >
The general quadratic equation is: ax2+bx+c=0.
The quadratic formula is: x=−b±√b2−4ac2a.
x=20±√202−4⋅16⋅52⋅16=20±√400−32032=20±√8032=20±√16⋅532=20±4√532=5±√58√x=√5±√58
Because sin(72∘)>sin(36∘)
we have:
sin(72∘)=√5+√58sin(36∘)=√5−√58
