Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #9
avatar+26397 
0

The same answer.

Using the same formula: sin(φ)=2sinφ2cosφ2

 

Given sin(π10)=(1+5)4

Find sin(π5)

 

Formula:
sin(φ)=2sinφ2cosφ2cosφ2=1sin2φ2sin(φ)=2sinφ21sin2φ2

 

We set:

sinφ=sin(π5)sinφ2=sin(π10)=514

 

sin(φ)=2sinφ21sin2φ2sin(π5)=25141(514)2sin(π5)=5121(514)2sin(π5)=51216(51)216sin(π5)=51216(525+1)16sin(π5)=512165+251)16sin(π5)=51210+2516sin(π5)=(51)24(10+25)16sin(π5)=(51)2(10+25)64sin(π5)=(525+1)(10+25)64sin(π5)=60+1252054564sin(π5)=408564sin(π5)=858588sin(π5)=85888588sin(π5)=5858

 

laugh

24.11.2016
 #7
avatar+26397 
+5

Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)

 

Also the problem says that given sin(π10)=(1+5)4, find sin(π5)

 

Formula:

sin(2φ)=2sinφcosφcosφ=1sin2φsin(2φ)=2sinφ1sin2φ

 

We set:

sin2φ=sin(π5)sinφ=sin(π10)=514

 

We have:

sin(2φ)=2sinφ1sin2φsin(π5)=25141(514)2sin(π5)=5121(514)2sin(π5)=51216(51)216sin(π5)=51216(525+1)16sin(π5)=512165+251)16sin(π5)=51210+2516sin(π5)=(51)24(10+25)16sin(π5)=(51)2(10+25)64sin(π5)=(525+1)(10+25)64sin(π5)=60+1252054564sin(π5)=408564sin(π5)=858588sin(π5)=85888588sin(π5)=5858

 

laugh

23.11.2016
 #4
avatar+26397 
+10

what is the exact value of sin (pi/5) ?

 

Formula:

sin(5φ)=16sin5(φ)20sin3(φ)+5sin(φ)

 

Ansatz:

(1):sin(360)=0=sin(572)=16sin5(72)20sin3(72)+5sin(72)16sin5(72)20sin3(72)+5sin(72)=0|:sin(72)16sin4(72)20sin2(72)+5=0|x=sin2(72)16x220x+5=0(2):sin(180)=0=sin(536)=16sin5(36)20sin3(36)+5sin(36)16sin5(36)20sin3(36)+5sin(36)=0|:sin(36)16sin4(36)20sin2(36)+5=0|x=sin2(36)16x220x+5=0

 

The quadratic polynomial 16x220x+5 has following roots: < sin2(72), sin2(36) >

 

The general quadratic equation is: ax2+bx+c=0.


The quadratic formula is: x=b±b24ac2a.

 

x=20±2024165216=20±40032032=20±8032=20±16532=20±4532=5±58x=5±58

 

Because sin(72)>sin(36)
we have:

sin(72)=5+58sin(36)=558

 

laugh

23.11.2016
 #1
avatar+26397 
+5

x      y
5      8
9    10

11  13
17  19

Use the Paired Data Set.  
Find the equation for the least-squares regression line

 

xyxyxx1584025291090813111314312141719323289sum4250596516

 

We find for the values:

N=4X=42Y=50XY=596X2=516

 

Slope(b)=NXY(X)(Y)NX2(X)2=4596(42)(50)4516(42)2=2384210020641764=284300=0.94666666667

 

Intercept(a)=Yb(X)N=500.94666666667(42)4=500.94666666667(42)4=5039.764=10.244=2.56

 

Regression Equation(y)=a+bxy=2.56+0.94¯6x

 

 

laugh

23.11.2016
 #1
avatar+26397 
+10

5x-y+4z=14

-5x-y-2z=-10

-5x+3y-6z=-18

Solving this by linear combination?

 

(1):5xy+4z=14(2):5xy2z=10(3):5x+3y6z=18(1)+(2):5xy+4z5xy2z=14102y+2z=4|:2y+z=2(I):z=2+y(1)+(3):5xy+4z5x+3y6z=14182y2z=4|:(2)y+z=2(II):z=2+y|(II)=(I) !!!(1):5xy+4z=14|z=2+y5xy+4(2+y)=14(III):5x+3y=6(2):5xy2z=10|z=2+y5xy2(2+y)=105x3y=6|(1)(IV):5x+3y=6|(IV)=(III) !!!

 

Solution:

Let tR and we set z=t

 

(I):z=2+y|z=tt=2+yy=t2(III):5x+3y=6|y=t25x+3(t2)=65x+3t6=65x+3t=125x=123t5x=123t|:5x=12535t

 

summary:
tRx=12535ty=t2z=t

 

laugh

23.11.2016