cos2x - cosx = 0 i need steps....
rearrange
cos(2x)−cos(x)=0cos(2x)=cos(x) cos(φ)=cos(−φ)
We have 4 variations: {nl} (1)cos(2x)=cos(x)⇒2x±2k1π=x±2k2π(2)cos(−2x)=cos(x)⇒−2x±2k1π=x±2k2π(3)cos(2x)=cos(−x)⇒2x±2k1π=−x±2k2π(4)cos(−2x)=cos(−x)⇒−2x±2k1π=−x±2k2π(1)2x±2k1π=x±2k2π⇒x=0±2kπ(2)−2x±2k1π=x±2k2π⇒−3x=0±2kπ(3)2x±2k1π=−x±2k2π⇒3x=0±2kπ(4)−2x±2k1π=−x±2k2π⇒−x=0±2kπ⇒x=±2kπ⇒x=±23kπ
We can put together x=±23kπk∈N0


