Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+15

x^3-6x=6  ...   x=2^(2/3)+2^(1/3)

 

 x3+px+q=0x=3q2+q24+p327+3q2q24+p327If q24+p3270 

 

x36x=6x36x6=0x3+px+q=0|p=6=q=6x=3q2+q24+p327+3q2q24+p327x=362+(6)24+(6)327+362(6)24+(6)327x=33+9(6)327+339(6)327x=33+982727+33982727x=33+98+3398x=33+1+331x=33+1+331x=34+32x=322+32x=223+213

 

laugh

03.03.2016
 #1
avatar+26396 
0

3^(2x)+9=10*3^x

 

32x+9=103x|103x32x103x+9=03x+x103x+9=03x3x103x+9=0|z=3xzz10z+9=0z210z+9=0

 

 ax2+bx+c=0x=b±b24ac2a 

 

z210z+9=0|a=1b=10c=9z=(10)±(10)241921z=10±100362z=10±642z=10±82z=5±4z1=5+4z1=9z2=54z2=1

 

z=3x|ln()ln(z)=ln(3x)ln(z)=xln(3)x=ln(z)ln(3)x1=ln(z1)ln(3)x1=ln(9)ln(3)x1=ln(32)ln(3)x1=2ln(3)ln(3)x1=2x2=ln(z2)ln(3)x2=ln(1)ln(3)|ln(1)=0x2=0ln(3)x2=0

laugh

.
03.03.2016
 #1
avatar+26396 
+5

6(4^x+9^x)=13*6^x

 

6(4x+9x)=136x|:64x+9x=1366x|:6x4x6x+9x6x=136(46)x+(96)x=136(23)x+(32)x=136(132)x+(32)x=1361(32)x+(32)x=136|z=(32)x1z+z=136|zzz+z2=136z1+z2=136zz2136z+1=0

 

 ax2+bx+c=0x=b±b24ac2a 

 

z2136z+1=0|a=1b=136c=1z=(136)±(136)241121z=136±1326242z=136±132462622z=136±169144622z=136±25622z=136±52622z=136±562z=1312±512z1=1312+512z1=1812z1=32z2=1312512z2=812z2=23

 

z=(32)x|ln()ln(z)=xln(32)x=ln(z)ln(32)x1=ln(z1)ln(32)x1=ln(32)ln(32)x1=1x2=ln(z2)ln(32)x2=ln(23)ln(32)x2=ln(132)ln(32)x2=ln(1)ln(32)ln(32)|ln(1)=0x2=0ln(32)ln(32)x2=ln(32)ln(32)x2=1

laugh

.
03.03.2016
 #1
avatar+26396 
+10

4^x-3*2^(x+2)+2^5=0

 

4x32x+2+25=04x32x22+25=04x122x+25=0(22)x122x+25=02x2x122x+25=0|z=2xz212z+32=0

 

 ax2+bx+c=0x=b±b24ac2a 

 

z212z+32=0|a=1b=12c=32z=(12)±(12)2413221z=12±1441282z=12±162z=12±42z=6±2z1=6+2z1=8z2=62z2=4

 

z=2x|ln()ln(z)=xln(2)ln(z)=xln(2)x=ln(z)ln(2)x1=ln(z1)ln(2)x1=ln(8)ln(2)x1=ln(23)ln(2)x1=3ln(2)ln(2)x1=3x2=ln(z2)ln(2)x2=ln(4)ln(2)x2=ln(22)ln(2)x2=2ln(2)ln(2)x2=2

laugh

.
03.03.2016
 #8
avatar+26396 
+10

cos2x - cosx = 0 i need steps....

 

rearrange

 

cos(2x)cos(x)=0cos(2x)=cos(x) cos(φ)=cos(φ) 

 

We have 4 variations: {nl} (1)cos(2x)=cos(x)2x±2k1π=x±2k2π(2)cos(2x)=cos(x)2x±2k1π=x±2k2π(3)cos(2x)=cos(x)2x±2k1π=x±2k2π(4)cos(2x)=cos(x)2x±2k1π=x±2k2π(1)2x±2k1π=x±2k2πx=0±2kπ(2)2x±2k1π=x±2k2π3x=0±2kπ(3)2x±2k1π=x±2k2π3x=0±2kπ(4)2x±2k1π=x±2k2πx=0±2kπx=±2kπx=±23kπ

 

We can put together  x=±23kπkN0

 

 

 

laugh

03.03.2016