Triangle RST has vertices R (-3,4), S (-1,0), T (3,2). Find the length of the altitude from S to RT.
→RT=→R−→T=(−34)−(32)=(−62)¯RT=|→RT|=√→RT⋅→RT¯RT=√(−62)(−62)¯RT=√36+4¯RT=√40¯RT=√4⋅10¯RT=2√10
→ST=→S−→T=(−10)−(32)=(−4−2)¯RT⋅h=|→RT×→ST|h=|→RT×→ST|¯RTh=|(−62)×(−4−2)|2√10h=(−6)⋅(−2)−(2)⋅(−4)2√10h=12+82√10h=202√10h=10√10⋅√10√10h=1010⋅√10h=√10
