heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #5
avatar+26388 
+5

x^x=2.  How to solve this equation?

 

$$\small{\text{$
\begin{array}{rcl}
x^x &=&2 \qquad | \qquad \ln{()}\\
x\ln(x) &=& \ln{(2)} \qquad | \qquad x = e^{ln{(x)}}\\
e^{ln{(x)}}\cdot \ln{(x)} & =& \ln{(2)} \qquad | \qquad z = \ln{(x)} \\
e^z\cdot z &=& \ln{(2)}\\
\end{array}
$}}\\\\
\small{\text{
If we have $\boxed{~a=z\cdot e^z~}$,
the solution is $\boxed{~z=W(a)~}$. and $\boxed{~x=e^z~} $}}\\
\small{\text{
In mathematics, the Lambert W function, is also called the omega function or product logarithm
}}$$

$$\small{\text{$
\begin{array}{lrcl}
\text{We have }& z &=& \ln{(x)}\\
\text{and } & e^z\cdot z &=& \ln{(2)}\\
\text{so } & z &=& W(\ln{(2)})\\
\text{and } & \ln{(x)}&=& W(\ln{(2)})\\\\
& e^{\ln{(x)}} &=& e^{W(\ln{(2)})}\\
\text{finally }& x &=& e^{W(\ln{(2)})}\\
\text{also } & \mathbf{ x }& \mathbf{=} & \mathbf{\dfrac{\ln{(2)}}{W(\ln{(2)})} }
\end{array}
$}}\\\\$$

$$\small{\text{ Numerical Evaluation:}}\\ \small{\text{ The $W$ function may be approximated using Newton's method, with successive approximations to}}\\ \small{\text{ $z=W(a)$ (so $a=ze^z$) being $z_{j+1}=z_j-\dfrac{z_j e^{z_j}-a}{e^{z_j}+z_j e^{z_j}}$. }}\\
\small{\text{We start the Iteration with $z_0 = 1$}}\\$$

 

$$\small{\text{$
\begin{array}{rclcrcl}
z_1 &=& 1 - \dfrac{ 1\cdot e^1 - \ln{(2)} }{e^1+ 1\cdot e^1 } = 0.62749729872 &\quad & x_1 &=& \dfrac{ \ln{(2)} } {z_1} = 1.10462177603\\\\
z_2 &=& z_1-\dfrac{z_1 e^{z_1}- \ln{(2)} }{e^{z_1}+z_1 e^{z_1}} = 0.24045491796 &\quad & x_2 &=& \dfrac{ \ln{(2)} } {z_2} = 2.88264921519\\\\
z_3 &=& z_2-\dfrac{z_2 e^{z_2}- \ln{(2)} }{e^{z_2}+z_2 e^{z_2}} = 0.48596644327 &\quad & x_3 &=& \dfrac{ \ln{(2)} } {z_3} = 1.42632724987\\\\
z_4 &=& z_3-\dfrac{z_3 e^{z_3}- \ln{(2)} }{e^{z_3}+z_3 e^{z_3}} = 0.44585119296 &\quad & x_4 &=& \dfrac{ \ln{(2)} } {z_4} = 1.55466036989\\\\
z_5 &=& z_4-\dfrac{z_4 e^{z_4}- \ln{(2)} }{e^{z_4}+z_4 e^{z_4}} = 0.44443778365 &\quad & x_5 &=& \dfrac{ \ln{(2)} } {z_5} = 1.55960452971\\\\
z_6 &=& z_5-\dfrac{z_5 e^{z_5}- \ln{(2)} }{e^{z_5}+z_5 e^{z_5}} = 0.44443609102 &\quad & x_6 &=& \dfrac{ \ln{(2)} } {z_6} = 1.55961046945\\\\
z_7 &=& z_6-\dfrac{z_6 e^{z_6}- \ln{(2)} }{e^{z_6}+z_6 e^{z_6}} = 0.44443609102 &\quad & x_7 &=& \dfrac{ \ln{(2)} } {z_7} = 1.55961046946\\\\
\end{array}
$}}$$

 

x = 1.55961046946

 

10.08.2015
 #3
avatar+26388 
+5

16% of the pens in a stationery shop are red. The number of black pens is 3/4 the number of red pens. The number of green pens is 5/7 the total number if red and black pens. The rest of the pens in the shop are blue. The number of blue pens is 180 more than the number of red, black and green pens. Find the total number of pens in the shop

x are the number of the pens.

$$\\\small{
\begin{array}{rcl}
\textcolor[rgb]{150,0,0}{\text{red}} &=& 0,16x\\\\
\text{black}& =& \dfrac{3}{4}\textcolor[rgb]{150,0,0}{\text{red}} \\\\
\textcolor[rgb]{0,150,0}{green} &=& \dfrac{5}{7}( \textcolor[rgb]{150,0,0}{\text{red}} +\text{black} ) = \dfrac{5}{7}\textcolor[rgb]{150,0,0}{\text{red}} + \dfrac{5}{7}\cdot \dfrac{3}{4}\textcolor[rgb]{150,0,0}{\text{red}} = \dfrac{5}{4} \textcolor[rgb]{150,0,0}{\text{red}} \\\\
\textcolor[rgb]{0,0,150}{blue}& =& 180 + ( \textcolor[rgb]{150,0,0}{\text{red}} +\text{black} + \textcolor[rgb]{0,150,0}{green} )
= 180 + \textcolor[rgb]{150,0,0}{\text{red}} +\dfrac{3}{4}\textcolor[rgb]{150,0,0}{\text{red}}+\dfrac{5}{4} \textcolor[rgb]{150,0,0}{\text{red}} = 180 + 3\cdot \textcolor[rgb]{150,0,0}{\text{red}} \\\\\\
x &=& \textcolor[rgb]{150,0,0}{\text{red}} +\text{Black}
+\textcolor[rgb]{0,150,0}{green}+\textcolor[rgb]{0,0,150}{blue}\\\\
x &=& \textcolor[rgb]{150,0,0}{\text{red}}
+\dfrac{3}{4}\textcolor[rgb]{150,0,0}{\text{red}}
+\dfrac{5}{4} \textcolor[rgb]{150,0,0}{\text{red}}
+180 + 3\cdot \textcolor[rgb]{150,0,0}{\text{red}} \\\\
x &=& 6\cdot \textcolor[rgb]{150,0,0}{\text{red}} +180\\\\
x &=& 6\cdot 0.16x+180\\\\
x &=& 0.96x+180\\\\
x-0.96x &=& 180\\\\
0.04x &=& 180\\\\
x &=& \dfrac{180\cdot 100}{4}\\\\
\mathbf{x}& \mathbf{=}& \mathbf{4500}
\end{array}
}$$

 

The total number of pens in the shop is 4500

red = 720

black = 540

green = 900

blue = 2340

 

10.08.2015