Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+5

June had twice as many apples as oranges. Ken had 1/4 as many oranges as apples. The number of oranges Ken had was 2/9 as many as the number of apples June had. Ken had 120 apples and oranges.

(a) express the number of oranges June had as a fraction of the number of apples Ken had. Give you answers in its SIMPLEST FORM.

 

O1= oranges June A1= apples June O2= oranges Ken A2= apples Ken (1)A1=2O1(2)O2=14A2(3)O2=29A1(4)120=O2+A2(1),(2),(3)14A2=29A1|A1=2O114A2=292O114A2=49O1O1=1494A2O1=916A2

 

The number of oranges June had is 9/16 of the number of apples Ken had.

 

(A2?)120=O2+A2|O2=14A2120=14A2+A2120=54A2A2=12045A2=96(O1?)O1=916A2O1=91696O1=54(A1?)A1=2O1A1=254A1=108(O2?)O2=14A2O2=1496O2=24

 

orangesapples54108June2496Ken

 

17.08.2015
 #2
avatar+26396 
+5

nth derivative of 10x

 

 

\text{ \small{Formula} $  \boxed{  \begin{array}{lcl}  y &=& e^{k\cdot x} \\  y' &=& k \cdot e^{k\cdot x} \qquad y'' = k^2 \cdot e^{k\cdot x} \qquad y''' = k^3 \cdot e^{k\cdot x} \qquad \cdots \\  y^{(n)} & = & k^n \cdot e^{k\cdot x}   \end{array}  }  $} \\\\\\  \small{\text{$  \begin{array}{lcl}  y &=& 10^{-x} \qquad \Rightarrow \qquad   y = e^{-x\cdot \ln{(10)} } = e^{ \overbrace{\left[  -\ln{10} \right] }^{=\big{k}} \cdot x }\\  \end{array}  $}} \\\\  \small{\text{$  \underline{ y^{n} = k^n \cdot e^{k\cdot x} }  \qquad \underline{ k = -\ln{(10)} }  $}} \\\\  \small{\text{$  \begin{array}{lcl}  y^{(n)} &=& [-\ln{(10)} ]^n \cdot   \underbrace{ e^{ [-\ln{(10)} ]\cdot x} }_{=\big{10^{-x}}}\\\\  \mathbf{y^{(n)}} & \mathbf{=} & \mathbf{[-\ln{(10)} ]^n \cdot 10^{-x} }\\\\  \end{array}  $}} \\\\

 

17.08.2015
 #1
avatar+26396 
+10
16.08.2015