heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26388 
+8

z^2=i  solve z

 

$$\small{\text{$
\begin{array}{rcl}
z^2&=&i \qquad | \qquad z^2= a+bi \quad a=0 $ and $ b = 1\\\\
r&=& \sqrt{a^2+b^2}=\sqrt{0^2+1^2}=\sqrt{1^2}=1\\\\
\varphi &=& \arctan{ \left(\dfrac{b}{a}\right) }=\dfrac{1}{0} \Rightarrow \varphi = \dfrac{\pi}{2}
\qquad
\varphi =
\begin{cases}
\arctan\left(\frac{b}{a}\right) & \text{for}\ a > 0,\ b \geq 0 \qquad \text{(1. Quadrant)}\\
\arctan\left(\frac{b}{a}\right) + 2\pi & \mathrm{f\ddot ur}\ a > 0,\ b < 0 \qquad \text{(4. Quadrant)}\\
\arctan\left(\frac{b}{a}\right) + \pi & \mathrm{f\ddot ur}\ a < 0 \qquad\qquad\quad \text{(2./3. Quadrant)}\\
\frac{\pi}{2} & \mathrm{f\ddot ur}\ a = 0,\ b > 0 \qquad \text{(positive Im-axis)}\\
\frac{3\pi}{2} & \mathrm{f\ddot ur}\ a = 0,\ b < 0 \qquad \text{(negative Im-axis)}\\
\text{indeterminate} & \mathrm{f\ddot ur}\ a = 0,\ b = 0 \qquad \text{(zero)}
\end{cases} \\\\
z^2&=& r\cdot e^{i\cdot \varphi}\\\\
z^2&=& 1\cdot e^{i\cdot \frac{\pi}{2}+2k\pi} \qquad | \qquad \sqrt{}\\\\
z_k &=& e^{i\cdot \frac{\pi}{2\cdot 2 }+\frac{2k\pi}{2} } \\\\
z_k &=& e^{i\cdot \frac{\pi}{4}+ k\pi } \\\\
k =0 \quad z_0 &=& e^{i\cdot \frac{\pi}{4}}\\\\
k =1 \quad z_1 &=& e^{i\cdot \frac{5\pi}{4}} \\\\
&& \boxed{~e^{i\varphi} =\cos{(\varphi)+i\sin{(\varphi)}} ~}\\\\
z_0 &=& e^{ i\frac{\pi}{4} } =\cos{(\frac{\pi}{4})+i\sin{(\frac{\pi}{4})}}\\\\
\mathbf{z_0} &\mathbf{=}& \mathbf{\dfrac{ \sqrt{2} }{2} +\dfrac{ \sqrt{2} }{2} i}\\\\
z_1 &=& e^{ i\frac{5\pi}{4} } =\cos{(\frac{5\pi}{4})+i\sin{(\frac{5\pi}{4})}}\\\\
\mathbf{z_1} &\mathbf{=}& \mathbf{-\dfrac{ \sqrt{2} }{2} -\dfrac{ \sqrt{2} }{2} i}
\end{array}
$}}$$

 

 

10.08.2015
 #3
avatar+26388 
+8

Aus 60 Liter 96%tigem Alkohol und einer unbekannten

Menge 80%tigem Stroh Rum soll 90%iter Alkohol hergestellt werden.

Wieviel 80%igen Rum brauche ich?


 $$\small{\text{
\boxed{
$V_1 \cdot p_1 + V_2 \cdot p_2 = (V_1 + V_2)\cdot \mathbf{p}\qquad $
wobei $\mathbf{p}$ den Prozentsatz der Gesamtmischung darstellt.
}
}}\\\\
\small{\text{
$\textcolor[rgb]{150,0,0}{V_1 = 60} $ Liter und $\textcolor[rgb]{150,0,0}{p_1 = 96}\%$
}}\\
\small{\text{
$\textcolor[rgb]{0,150,0}{V_2 = x} $ Liter und $\textcolor[rgb]{0,150,0}{p_2 = 80}\%$
}}\\
\small{\text{
$\mathbf{p = 90}\%$}}\\\\
\small{\text{$
\begin{array}{rcl}
\textcolor[rgb]{150,0,0}{V_1 \cdot p_1} +\textcolor[rgb]{0,150,0}{ V_2 \cdot p_2}
&=& (\textcolor[rgb]{150,0,0}{V_1} + \textcolor[rgb]{0,150,0}{V_2} )\cdot \mathbf{p}\\
\textcolor[rgb]{150,0,0}{60 \cdot 96} +\textcolor[rgb]{0,150,0}{ x \cdot 80}
&=& (\textcolor[rgb]{150,0,0}{60} + \textcolor[rgb]{0,150,0}{x} )\cdot \mathbf{90}\\
\textcolor[rgb]{150,0,0}{60 \cdot 96} +\textcolor[rgb]{0,150,0}{ x \cdot 80}
&=& \textcolor[rgb]{150,0,0}{60}\cdot \mathbf{90} + \textcolor[rgb]{0,150,0}{x}\cdot \mathbf{90}\\
\textcolor[rgb]{150,0,0}{60 \cdot 96} - \textcolor[rgb]{150,0,0}{60}\cdot \mathbf{90}
&=& \textcolor[rgb]{0,150,0}{x}\cdot \mathbf{90}-\textcolor[rgb]{0,150,0}{ x \cdot 80} \\
\textcolor[rgb]{150,0,0}{60}\cdot 6 &=& \textcolor[rgb]{0,150,0}{x}\cdot 10 \\
\textcolor[rgb]{0,150,0}{x}\cdot 10 &=& \textcolor[rgb]{150,0,0}{60}\cdot 6 \\
\textcolor[rgb]{0,150,0}{x}\cdot 10 &=& 360 \\\\
\textcolor[rgb]{0,150,0}{x} &=& \dfrac{360}{10}\\\\
\textcolor[rgb]{0,150,0}{x} &\mathbf{=}& \mathbf{36} \\
\end{array}
$}}$$

 

Du brauchst 36 Liter 80%igen Rum.

 

07.08.2015
 #1
avatar+26388 
+5

 

 

$${\mathtt{y1}} = {\frac{{\mathtt{\,-\,}}{\mathtt{m}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{k}}\right)}}{\mathtt{\,\times\,}}{In}{\left({\frac{\left({\mathtt{T}}{\mathtt{\,-\,}}{\mathtt{mg}}{\mathtt{\,-\,}}{{\mathtt{kv}}}^{{\mathtt{2}}}\right)}{\left({\mathtt{T}}{\mathtt{\,-\,}}{\mathtt{mg}}\right)}}\right)}$$

 

Use this algorithm to calculate how many Newtons of force a rocket gives off.

m = mass of rocket

g = 9.81 m/s²

v = velocity of rocket

y = height rocket reaches

k = wind resistance forces

T = motor thrust in Newtons (AKA what we're solving for.)

 

$$\small{\text{$T=?$}}$$

$$\small{\text{$
\begin{array}{rcl}
y_1 &=& -\dfrac{m}{2k}\cdot \ln{ \left( \dfrac{T-(mg+kv^2) }{T-mg} \right) }\\\\
-2y_1\frac{k}{m} &=& \ln{ \left( \dfrac{T-(mg+kv^2) }{T-mg} \right) } \qquad | \qquad e^x \\\\
e^{-2y_1\frac{k}{m}} &=& \dfrac{T-(mg+kv^2) }{T-mg} \\\\
\dfrac{1}{e^{2y_1\frac{k}{m}}} &=& \dfrac{T-(mg+kv^2) }{T-mg} \\\\
e^{2y_1\frac{k}{m}} &=& \dfrac{T-mg}{T-(mg+kv^2) } \\\\
\left[ T-(mg+kv^2) \right] ( e^{2y_1\frac{k}{m}} ) &=& T-mg \\\\
T\cdot ( e^{2y_1\frac{k}{m}} )- (mg+kv^2)\cdot ( e^{2y_1\frac{k}{m}} ) &=& T-mg \\\\
T\cdot ( e^{2y_1\frac{k}{m}} - 1 ) &=& (mg+kv^2)\cdot ( e^{2y_1\frac{k}{m}} ) -mg \\\\
\mathbf{T} & \mathbf{=} & \mathbf{\dfrac{(mg+kv^2)\cdot ( e^{2y_1\frac{k}{m}} ) -mg } {( e^{2y_1\frac{k}{m}} - 1 )}} \\\\
\end{array}
$}}$$

 

06.08.2015