heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

Integral x times sqrt (0.25 - xsquared) dx

 

$$\small{\text{$
\begin{array}{lrcl}
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=& \frac{1}{2}\int{x \sqrt{1-(2x)^2} \ dx } \\\\
\mathrm{We~ substitute:~} & 2x &=& \sin{(z)} \\
&2\ dx &=& \cos{(z)}\ dz \\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=& \frac{1}{2}\int{
\frac{\sin{(z)} }{2}
\sqrt{1-[\sin{(z)} ]^2} \cdot \frac{ \cos{(z)} }{2}\ dz } \\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
\frac{1}{8} \int{
\sin{(z)} \cdot \cos{(z)} \cdot \cos{(z)} \ dz }\\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
\frac{1}{8} \int{
\sin{(z)} \cdot \cos^2{(z)}\ dz }\\\\
\end{array}
$}}\\\\
\boxed{
\begin{array}{lrcl}
\mathrm{Formula:~} & y &=& \frac{ \cos^{n+1}{(z)} } {n+1} \\ \\
& y' &=& \frac{ (n+1)\cdot \cos^{n+1-1}{(z)} \cdot [-\sin{(z)}] }{n+1} \\\\
& y' &=& -\sin{(z)}\cdot \cos^{n}{(z)} \\\\
\mathrm{so:~} & -\int{ \sin{(z)}\cdot \cos^{n}{(z)} \ dz }
&=& \frac{ \cos^{n+1}{(z)} } {n+1} \\\\
& \mathbf{\int{ \sin{(z)}\cdot \cos^{n}{(z)} \ dz } }
&\mathbf{=}& \mathbf{ -\frac{ \cos^{n+1}{(z)} } {n+1} } \\\\
& \mathbf{\int{ \sin{(z)}\cdot \cos^{2}{(z)} \ dz } }
&\mathbf{=}& \mathbf{ -\frac{ \cos^{3}{(z)} } {3} }
\end{array}
}$$

 

$$\small{\text{$
\begin{array}{lrcl}
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
\frac{1}{8} \int{
\sin{(z)} \cdot \cos^2{(z)}\ dz }\\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
\frac{1}{8} \left[-\frac{ \cos^{3}{(z)} } {3} \right] + c \\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
-\frac{1}{24} \cdot \cos^{3}{(z)} + c \qquad | \qquad \cos{(z)} = \sqrt{1-(2x)^2}\\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
-\frac{1}{24} \cdot \left(\sqrt{1-(2x)^2} \right)^3 + c\\\\
& \int{x\sqrt{\frac{1}{4}-x^2 }} \ dx &=&
-\frac{1}{24} \cdot \left(1-4x^2\right)^{\frac32} + c
\end{array}
$}}$$

 

18.06.2015